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1. Introduction 
 

Parallel robots such as a Stewart platform have 
some advantage of high rigidity, high accuracy, and high 
load-carrying capacity over serial robots. However, they 
have some drawbacks of relatively small workspace and 
very difficult forward kinematics problems. These robots 
have found a variety of applications in flight simulators, 
high-precision machining centers, medical surgery [1, 2], 
and so on. 

In general, accuracy is defined by repeatability 
and bias. Lack of repeatability is due to random error and 
quantified by the variance of a number of measurements. 
Bias is systematic error and determined by the mean value. 
While it is difficult to compensate for the random error, 
compensation for the systematic error could be done effec-
tively by means of calibration. It is well known that excel-
lent positioning performance of the manipulator may be 
achieved based on an accurate kinematic equation. How-
ever, parameters of the equation inevitably deviate from 
their nominal values due to manufacturing and assembly 
errors. A direct consequence is to reduce the accuracy of 
the robots, since their control strategy heavily relies on a 
precise description of the kinematic equation. One way to 
tackle this problem is to improve the theoretical kinematic 
equation through kinematic calibration which consists of 
identifying a more accurate geometrical relationship be-
tween the joint sensor/encoder reading and the actual pose 
of the end-effector. Literatures indicated that the most eco-
nomical and feasible way of enhancing the manipulator 
accuracy is through kinematic calibration [3-5]. Kinemat-
ics calibration involves the following procedures: set up an 
appropriate kinematics model; take measurements of the 
robot pose; identify the actual kinematics parameters to 
minimize the errors between the poses predicted by the 
model and the actual measured ones; implement the identi-
fied robot kinematics model. 

Let us employ the paradigm of literature [6] in 
stating a unified calibration formulation. First, the principle 
is to link the unknown kinematic parameters P and the 
information on the state of the manipulator M, either pro-
vided by sensors or through constraints applied on joints or 
brought by an additional mechanism. Some closed loop 
equations f(P, M) = 0 can be determined; the equations 
vanish within the measurement error. The simplest way to 
determine M is by using the internal sensors of the manipu-
lator. Usually, though, as they do not provide redundant 
information, their number is minimal for controlling the 
manipulator’s degrees of freedom. It is possible to install 
additional captors on passive joints for self-calibration 
(with the benefit of simplifying the forward kinematics).  

In practice, it is not easy to add redundant sensors or con-
strain. Hence, most calibration methods use external meas-
urements devices to obtain the required information, such 
as laser trackers, theodolites, cameras, inclinometers or 
mechanical devices. Many authors use the kinematics to 
relate the kinematic parameters P to the available informa-
tion M. Then, the basic calibration methods with external 
measurements use either the forward kinematics or the 
inverse kinematics. Those calibration methods may be 
prone to error. The reason is the difficulty to obtain a 
closed form for the solutions of the kinematics problem. 
 
2. Kinematic model 
 
2.1. Inverse kinematics 
 

This section describes the parallel robot and its 
kinematics model. The robot consists of two rigid bodies, 
the base and the mobile platform, connected by 6 legs. The 
leg linear actuator provides 6 degree of freedom for the 
platform pose relative to the base, corresponding to posi-
tion P and rotation matrix R. A pose X = [P, R] is associ-
ated to 6 length variations li measured by internal leg sen-
sors, I = 1, …, 6. 

Each leg is attached to the base by a hook joint 
and to the platform by a hook joint; so 23 parameters are 
required to model each leg. But as shown in [6], the princi-
pal source of error in positioning is due to limited knowl-
edge of the joint centers and to the fact that part of the 
length is not given by the sensors. We thus use a simpler 
model with attachment point’s ai in the mobile frame, bi in 
the reference frame, and offset lengths l0,i. This gives 7 
parameters per leg, therefore 42 overall, denoted by ρ. 

The inverse kinematics problem of the parallel 
robot deals with calculating the leg lengths when the pose 
is given and the kinematics parameters are known. In ef-
fect, it is a mapping from global pose to local leg trans-
ducer readings. The inverse kinematics of a parallel robot 
is simple, yielding a nonlinear closed form solution. 

The vector chain in Fig. 1 can be expressed as 

 i i il Ra P b= + −     (1) 

The length of leg i can then be determined by tak-
ing the magnitude of Eq. (1) 

 iiii bPaRl −+==λ     (2) 

and the leg length sensor reading can be obtained by 

 iii ls ,0−= λ   (3) 
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Fig. 1 Schematic representation of the parallel robot 

2.2. Forward kinematics 
 

For the parallel robots, the forward kinematics is 
difficult to compute since it consists in solving Eq. (1) for 
P and R given li and ρ. Define the vector function to de-
scribe the difference between the estimated sensor reading 
( is ) and the actual sensor reading ( iŝ ). 
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The Newton-Raphson algorithm can be stated as: 
1. measure ŝ  and select an initial guess for the pose 

X; 
2. compute s  based on X0; 
3. form f; 
4. if XTX < tolerance1, exit with X as the solution; 
5. compute the partial derivative matrix XfJ ∂∂=  

such that jiji XfJ ∂∂=, ; 
6. solve for the update δX from JδX = -f; 
7. if δXTδX<tolerance2, exit with X as the solution; 
8. update X by X = X + δX and go to step 2. 

In step one, an initial pose vector X must be 
guessed. This is usually taken as the last pose of the mobile 
platform. In step two, the estimated length can be com-
puted with the inverse kinematics. Step three and four are 
straightforward, with f formed through Eq. (4) and toler-
ance being the allowed error in the pose calculation. The 
partial derivatives required in step five can be computed. 
Step six involves a 6 by 6 matrix inversion to calculate δX, 
and then in step seven, the norm of δX is tested to see if the 
update is significant. If the update is considered signifi-
cant, then the algorithm repeats from step two with the 
update pose vector. 
 
3. Error model 
 
3.1. Pose errors description of a joint-link chain 
 

Due to manufacturing tolerances and assembly er-
rors, all hook joints are imperfect-their axes neither inter-
sect nor are perpendicular to one another. As such, joint 
centers in actuality do not exist and the axes of the actua-
tors are skewed to joint axes. An error model that accom-
modates these error sources is needed in order to develop a 

calibration method that greatly enhances the parallel robot 
accuracy performance. 

A joint-link chain is defined as a set of consecu-
tive structure elements starting from the center of the base 
and going to the center of the mobile platform through one 
of the links. Kinematically, a joint-link chain can be mod-
eled by a set of consecutive transformations from the coor-
dinate frame O-XYZ to the coordinate frame o-xyz, as 
illustrated in Fig. 2. Seven transformations are used to 
model each joint-link chain in order to express the pose of 
the end-effector with respect to the base coordinate frame 

 0 1 2 3 4 5 6
1 2 3 4 5 6 7

b
pT T T T T T T T=    (5) 

The end-effector pose errors of each chain can be 
expressed by applying the general relations used in preci-
sion modeling of open chains 
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where each column of the Jacobian Ji describes the influ-
ence of one error source on the end-effector errors. 

 
Fig. 2 The coordinate frame of the ith joint-link chain 

 
3.2. Displacement error model of the joint 
 

The joint displacements in the passive joints Ai 
and Bi are dependent displacements; as a result, the dis-
placements errors in these joints are also dependent errors. 
Knowing that the end-effector errors are identical for all 6 
joint-link chains, all dependent errors can be expressed 
starting from the following equations 

 1 1 2 2 3 3 4 4 5 5 6 6J J J J J Jδυ δυ δυ δυ δυ δυ= = = = =  (8) 

From Eq. (8) 5 independent matrix equations re-
sult; separating the dependent term from the independent 
ones, we obtain 

1 1 1 1 1 1
int

0
int
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(9) 
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where [ ]Tziyixiyixi
dep
i δϕδϕδϕδγδγδυ = , [int

i BiXδυ δ=

]TAiAiAiiiBiBi zyxlLZY δδδδδδδ 0 . 
Next, the 5 equations (4) are assembled in one 

matrix equation 

 indinddepdep JJ δυδυ =    (10) 

where dep
xi yi xi yi zi xi yiδυ δγ δγ δφ δφ δφ δγ δγ⎡= ×⎣ "  

T

xi yi ziδφ δφ δφ ⎤× ⎦  is the global vector of dependent errors, 
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i JJJJJJ ϕϕϕγγ= , [ ,ind

i XBi YBi ZBiJ J J J=  

]zAiyAixAiliiL JJJJJ 0 , 61 ,,…=i . 
Finally, the dependent errors can be calculates by 

the following equation 

 ( ) 1 *dep dep ind ind indJ J Jδυ δυ δυ
−

= = .  (11) 

3.3. Pose errors determination of the parallel robot 
 

The matrix J* is a 30×48 size matrix, which can 
be subdivided into 6 sub matrices of 5 rows; each sub ma-
trix represent the error Jacobian of dependent errors from 
one joint-link chain related to the deviation indδυ . Consid-
ering one of the open chains, e.g. chain 1, the end-effector 
pose errors are expressed as 
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(12)

 

where 1GJ  is a special matrix, which relates the vector 

1δυ  to the vector indδυ . 
The influence of kinematic paramer deviations on 

the end-effector pose errors is described by a linear model, 
where the error Jacobian GJ  is the matrix of the following 
equation 

 ind
Gp JΔ δυ=    (13) 

Finally, considering Eqs. (12) and (13), the error 
Jacobian GJ  can be obtained though the following rela-
tions 

1 1 2 2 3 3 4 4 5 5 6 6G G G G G G GJ J J J J J J J J J J J J= = = = = = . (14) 

 

4. Kinematic calibration 
 

The error model given in Eq. (13) can be used for 
calibration to estimate the kinematic parameter errors 
based on pose measurement. It can also be used for toler-
ance analysis to examine the effect on the pose accuracy. 

There are eight independent parameters in each 
joint-link chain as shown in Eq. (9) for a 6-DOF parallel 
robot, so in total there are 48 parameters to be calibrated. 
As mentioned earlier in this paper, there parameters are 
independent, and must be determined individually. For 
calibration of 48 parameters, it requires at least eight pose 
measurements. A pose measurement collects six data, three 
position, and three orientations. Eight or more measure-
ments will collect 48 or more data, so Eq. (13) will become 
determinate or redundant. With adequate measurement at 
hand, these parameters can be estimated by the least 
squares algorithm as 

 ( ) 1
ˆ ind T T

G G GJ J J pδυ Δ
−

=    (15) 

where the hat ( ∧ ) sign indicates the estimated value 

 1 2 3 4 5 6 7 8

TT T T T T T T T
G G G G G G G G GJ J J J J J J J J⎡ ⎤= ⎣ ⎦
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is the augmented vector of the error Jacobian matrix, GJ , 
for all eight poses and 

 1 2 3 4 5 6 7 8
T T T T T T T Tp p p p p p p p pΔ Δ Δ Δ Δ Δ Δ Δ Δ⎡ ⎤= ⎣ ⎦  (17) 

is the augmented vector of the pose error vector pΔ  for all
 eight pose measurement. 

The final solution for the kinematic parameter er-
rors indυ̂  is iteratively calculated until the error converges. 
In each iteration, the geometry is updated to reflect the 
previously calculated kinematic parameter errors and an 
updated augmented error Jacobian matrix GJ  is generated 
to reflect the new geometry. This new matrix is then ap-
plied to the measured pose error, according to Eq. (15). 
This iterative process continues until the kinematic error 
converges. 

The new calibration geometry is then updated ac-
cording to the following equation: 

 indindind υδυυ ˆ+=      (18) 

To ensure optimal calibration, it is proposed to se-
lect these poses from the least sensitive area within the 
workspace. As discussed by Nahvi and Hollerbach [7], 
several indices have been suggested to quantify the good-
ness of pose selection. The noise amplification index was 
shown to have the greatest sensitivity to calibration error, 
and is thus chosen over indexes. The noise amplification 
index is defined by taking the singular value decomposi-
tion of the error Jacobian given in Eq. (14) 

 T
GJ U V= Σ         (19) 

where U  and V  are orthogonal matrices, and Σ  is a ma-
trix with the singular values of GJ  along its main diago-
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nal. Let the singular values be given by iσ  and ordered 
from largest to smallest so that pσσ ≥1 . Define the noise 
amplification index as: 

 1
2 σσ pO =   (20) 

The larger this index, the better the calibration ac-
curacy should be. The noise amplification index should 
only be used as a guide for pose selection, since a pose set 
with a larger index does not necessarily guarantee a better 
calibration. Instead, it only guarantees a better worst-case 
calibration. The preference for this index over other pro-
posed indexes is justified by Nahvi and Hollerbach [7]. 
 
5. Simulations and experiments 
 
5.1. Simulations 
 

Calibrations based on the parallel robot geometry 
were simulated with various parameter deviations, noise 
levels, and pose sets. The nominal parameters and the 
workspace limits of the parallel robot are listed in [8]. 
Three parameter sets were simulated, with the parameter 
deviations obtained from normal distributions with vari-
ances of 0.01 mm (set I), 0.1 mm (set II), and 1.0 mm (set 
III). Gaussian noise with variances of 0.0001, 0.001, 0.01, 
and 0.1 mm was added to the measurements to simulate 
measurement noise. Pose set 1 contains 64 poses, based on 
a full factorial exploration of the six pose variable limits. 
This pose set has a noise amplification index of 7.68×10-6. 
Pose set 2 has a noise amplification index of 6.71×10-5 and 
contains 100 poses selected from the workspace using a 
coordinate exchange algorithm. Pose set 3 has a noise am-
plification index of 3.26×10-6 and contains 100 random 
poses. Pose set 4 contains 200 poses selected by a coordi-
nate exchange algorithm, and has a noise amplification 
index of 9.57×10-5. 

Tables 1-3 give the simulated calibration results. 
Note that the first row in the tables corresponds to initial 
conditions of the parameter set. The estimation error is 
calculated as the 2-norm of the difference between the ac-
tual deviations and the estimated deviations. To determine 
the resulting error improvement, the pose error was simu-
lated before and after calibration. 

 
Table 1 

Calibration simulations with parameter set I 
 

Estimation error Position error Orientation error Pose 
Set Noise 

rms reduct rms reduct rms reduct 
 - 0.0853 - 0.3060 - 0.0177 - 

1 0.0001 0.0162 81% 0.0398 87% 0.0018 90% 
1 0.001 0.0384 55% 0.1040 66% 0.0041 77% 
1 0.01 0.0691 19% 0.2356 23% 0.0101 43% 
1 0.1 0.0836 2% 0.2693 12% 0.0150 15% 
2 0.0001 0.0111 87% 0.0245 92% 0.0012 93% 
2 0.001 0.0350 59% 0.1469 52% 0.0051 71% 
2 0.01 0.0640 25% 0.2417 21% 0.0085 52% 
2 0.1 0.0742 13% 0.2785 9% 0.0135 24% 
3 0.0001 0.0247 71% 0.0765 75% 0.0021 88% 
3 0.001 0.0580 32% 0.1928 37% 0.0050 72% 
3 0.01 0.0776 9% 0.2723 11% 0.0106 40% 
3 0.1 0.0845 0.9% 0.3121 -2% 0.0165 7% 
4 0.0001 0.0085 90% 0.0214 93% 0.0009 95% 
4 0.001 0.0316 63% 0.1377 55% 0.0055 69% 
4 0.01 0.0589 31% 0.2540 17% 0.0094 47% 
4 0.1 0.0708 17% 0.2876 6% 0.0122 31% 

Table 2 
Calibration simulations with parameter set II 

 

Estimation error Position error Orientation error 
Pose Set Noise 

rms reduct rms reduct rms reduct 
 - 0.3137 - 1.1730 - 0.0746 - 
1 0.0001 0.0063 98% 0.0352 97% 0.0015 98% 
1 0.001 0.0847 73% 0.2229 81% 0.0149 80% 
1 0.01 0.1914 39% 0.7390 37% 0.0612 18% 
1 0.1 0.2761 12% 0.9853 16% 0.0880 -18% 
2 0.0001 0.0094 97% 0.0235 98% 0.0007 99% 
2 0.001 0.0471 85% 0.1408 88% 0.0127 83% 
2 0.01 0.1663 47% 0.4105 65% 0.0395 47% 
2 0.1 0.2478 21% 0.8328 29% 0.0664 11% 
3 0.0001 0.0282 91% 0.0704 94% 0.0060 92% 
3 0.001 0.1349 57% 0.4809 59% 0.0157 79% 
3 0.01 0.2259 28% 0.8680 26% 0.0380 49% 
3 0.1 0.2917 7% 1.0205 13% 0.0656 12% 
4 0.0001 0.0157 95% 0.1525 87% 0.0045 94% 
4 0.001 0.0596 81% 0.0821 93% 0.0119 84% 
4 0.01 0.1725 45% 0.5161 56% 0.0545 27% 
4 0.1 0.2416 23% 0.7859 33% 0.0634 15% 

  
The reduction of the parameter estimation error 

by itself is not the goal of the calibration. Ultimately, the 
resulting errors of the parallel robot should be reduced. 
Fig. 3 shows that by estimating the model parameters well, 
the overall accuracy of the parallel robot can be improved. 
This verifies that better parameter estimates will result in 
improved robot accuracy. The plot shows good correlation 
between the parameter estimation error reduction percent-
age and the pose error reduction percentage. 

 
Table 3 

Calibration simulations with parameter set III 
 

Estimation error Position error Orientation error Pose Set Noise 
rms reduct rms reduct rms reduct 

 - 1.0019 - 1.6196 - 0.1246 - 
1 0.0001 0.0040 99.6% 0.0146 99.1% 0.0009 99.3% 
1 0.001 0.0601 94% 0.0486 97% 0.0025 98% 
1 0.01 0.2405 76% 0.2915 82% 0.0199 84% 
1 0.1 0.4108 59% 0.9880 39% 0.0511 59% 
2 0.0001 0.0030 99.7% 0.0049 99.7% 0.0006 99.5% 
2 0.001 0.0501 95% 0.0324 98% 0.0012 99% 
2 0.01 0.2104 79% 0.2429 85% 0.0137 89% 
2 0.1 0.3707 63% 0.7612 53% 0.0374 70% 
3 0.0001 0.0080 99.2% 0.0211 98.7% 0.0012 99% 
3 0.001 0.1102 89% 0.0810 95% 0.0112 91% 
3 0.01 0.3306 67% 0.4859 70% 0.0436 65% 
3 0.1 0.5210 48% 1.1823 27% 0.0586 53% 
4 0.0001 0.0020 99.8% 0.0032 99.8% 0.0004 99.7% 
4 0.001 0.0301 97% 0.0162 99% 0.0050 96% 
4 0.01 0.1603 84% 0.1782 89% 0.0237 81% 
4 0.1 0.2805 72% 0.8746 46% 0.0523 58% 

 

 
Fig. 3 Experimental setup 
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5.2. Experiments 
 

The important elements of the experimental setup 
depicted in Fig. 3 are the coordinate measuring machine, 
tooling balls and the parallel robots. After the coordinate 
measuring machine has been calibrated to measure the 
parallel robot pose with respect to the reference frame, the 
parallel robot is commanded to 120 different well-spaced 
poses within the robot workspace, which have been deter-
mined to cover the range of motion of all the legs. Note 
that at least 8 measurements are needed to estimate 48 pa-
rameters. The greater number of measurement would con-
tribute to the convergence of the algorithm and reduce the 
effect of measurement noise. A good initial guess helps a 
least square estimation algorithm to converge quickly 
without experiencing any numerical singularities. There-
fore, the nominal values of the parameters are taken as the 
initial values for the parameters while implementing 
nonlinear least square algorithm. 

The estimated technique mentioned above has 
been implemented using a program prepared in MatLab 
toolbox. The developed program can perform the calibra-
tion procedure considering any combination of the parame-
ters used in the kinematic model. The RMS pose errors 
with the nominal parameters and with 48 and 42 estimated 
parameters determined separately from the estimated tech-
nique are provided in Tables 4 and 5, respectively. The 
pose errors of the parallel robot with the nominal parame-
ters, 42, 48 estimated parameters are depicted in the first, 
second and the third columns of Fig. 4, respectively. 

By calibration based on 42-parameter model an 
accuracy improvement of a factor 6.6 for the parallel robot 
could be gained on the summation of RMS of position 
whereas by calibration based on 48-parameter model the 
predication of the position of the parallel robot improved 
by a factor of 7.8 for the summation of RMS. 

 
Table 4 

The RMS pose error with 48 parameters 
 

 RMSp ∑RMSp RMSo ∑RMSo 

Normal 
parameters 

0.4444 
1.5349 
2.2120 

4.1913 
0.1061 
0.2254 
0.2750 

0.6065 

Estimated 
parameters 

0.1718 
0.2226 
0.1399 

0.5343 
0.0159 
0.0498 
0.0504 

0.1161 

Improvement % 
61.34 
85.50 
93.68 

87.25 
85.01 
77.90 
81.67 

80.86 

 
Table 5 

The RMS pose error with 42 parameters 
 

 RMSp ∑RMSp RMSo ∑RMSo 

Normal 
parameters 

0.4444 
1.5349 
2.2120 

4.1913 
0.1061 
0.2254 
0.2750 

0.6065 

Estimated 
parameters 

0.2023 
0.2658 
0.1625 

0.6306 
0.0211 
0.0585 
0.0643 

0.1439 

Improvement % 
54.48 
82.68 
92.65 

84.95 
80.11 
74.05 
76.62 

76.27 

 

 
Fig. 4 The pose errors with the nominal, 42 and 48 identi-

fied parameters 

6. Conclusions 
 

This paper presents a kinematic parameter identi-
fication algorithm and some calibration results based on a 
coordinate measurement technique and a more complete 
kinematic model including sensor errors for parallel robot. 
In the iteration algorithm, it is important to select initial 
values. It has tightly relationship with the convergence and 
local minima. The identification results based on inverse 
kinematic calibration model are set as the initial values of 
nonlinear least squares algorithm. It not only solves the 
problem mentioned above, but also decreases the iteration 
steps greatly for the initial values to be closer to the real 
values. For the ill-condition matrix problem caused by 
noise, the Levenberg-Marquardt algorithm is adopted. In 
addition selection of calibration pose sets is briefly dis-
cussed, as well as the influence of measurement noise on 
calibration accuracy. Finally, based on above analysis, 
kinematic calibration experiments are carried out. The po-
sition error RMS of a parallel robot is reduced from 4.19 to 
0.53 mm and the orientation error RMS is also reduced 
from 0.61 to 0.12°.  
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Dayong Yu, Weifang Chen, Hongren Li 

LYGIAGREČIOJO ROBOTO SKIRTO PUSIAU 
FIZINIO PRISIJUNGIMO MECHANIZMO KOSMINĖJE 
ERDVĖJE IMITAVIMUI KINEMATINIŲ 
PARAMETRŲ NUSTATYMAS 
 
R e z i u m ė 

 
Pusiau fizinė imitacinė platforma naudota siekiant 

nustatyti lygiagrečių robotų kinematinių parametrų paklai-
das, reikalingas norint padidinti padėties tikslumą. Šiame 
straipsnyje taikomas metodinis kinematinių parametrų nu-
statymo būdas. Tam reikalinga visų kojų ir padėčių mata-
vimo mašina gauta informacija. Kinematiniams paramet-
rams nustatyti yra pritaikytas nelinijinis mažųjų kvadratų 
algoritmas. Kojų jutiklių matavimo paklaidos nustatomos 
kinematiniu modeliavimu ir kinematinių parametrų identi-
fikavimu. Stewarto lygiagrečiojo roboto, sukurto Electro-
hydraulic Servo Simulation and Test System centre Harbi-
no technologijos institute, imitavimo ir eksperimentiniai 
tyrimai parodė, kad jo parametrų identifikavimo algoritmas 
ir kalibravimo metodai tinka lygiagretiesiems robotams. 

 

Dayong Yu, Weifang Chen, Hongren Li 

KINEMATIC PARAMETER IDENTIFICATION OF 
PARALLEL ROBOTS FOR SEMI-PHYSICAL 
SIMULATION PLATFORM OF SPACE DOCKING 
MECHANISM 

S u m m a r y 

Because of errors in the kinematic parameters of 
parallel robots, it is necessary to identify them to improve 
the pose accuracy for accurate task performance of semi-
physical simulation platform. In this paper, a methodical 
way of kinematic parameter identification is introduced. It 
requires measurements of all legs and the pose information 
provided by a coordinate measuring machine. Nonlinear 
least squares algorithm is employed to determine the ki-
nematic parameters. The measurement errors in the leg 
sensors are considered during kinematic modeling and 
kinematic parameter identification. Simulations and ex-
perimental studies on a Stewart parallel robot built in the 
Institute of Electro-hydraulic Servo Simulation & Test 
System of Harbin Institute of Technology reveal the con-
venience and effectiveness of the proposed robot parameter 
identification algorithm and calibration method for parallel 
robots. 
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