
 551

ISSN 1392 - 1207. MECHANIKA. 2011. 17(5): 551-556

Agent-based methodology for developing mechatronic systems software
L. Kizauskiene*, E. Kazanavicius**, R. Gaidys***
*Kaunas University of Technology, Studentų st. 50, 51368 Kaunas, Lithuania, E-mail: losta@ifko.ktu.lt
**Kaunas University of Technology, Studentų st. 50, 51368 Kaunas, Lithuania, E-mail: ekaza@ifko.ktu.lt
***Kaunas University of Technology, Studentų st. 65, 51369 Kaunas, Lithuania, E-mail: rimvydas.gaidys@ktu.lt

1. Introduction

Due to recent technological advances, the devel-
opment of mechatronic systems shift from only integrating
the mechanical, electrical, electronic and computer systems
to an evolutionary development of systems, capable of
complex decision making, adding intelligence to a me-
chanical design or even replacing mechanical designs with
an intelligent electronic solution. Embedded systems play
an important role in this process which is based on finding
an optimal interconnection between the basic mechanical
structure, sensors and actuators, information processing
and control. The relation between the field of embedded
systems and mechatronics becomes even more significant
as the intelligence of embedded systems can bring value-
added services for mechatronic devices as well as ensure
other essential product characteristics such as reliability,
enhanced performance, fail-safe operation and interopera-
bility.

Growing requirements for modern embedded
software alter their development methods, processes and
the means for their construction. Reduced time to market,
decreased development and operating costs, flexible de-
sign, fail-safe performance, predictable behaviour under
hard real-time constraints, scalable and open architecture
supporting software reuse and reconfiguration are only part
of the challenges for researchers both in industry and aca-
demia. Furthermore, such systems are expected to be
autonomous, collect environmental data, cause impact on
other system elements, analyse complex situations and
make decisions. On the other hand, it should be noted, that
such system aspects as operating speed or optimal code
become less important as modern computer systems ensure
sufficient resources. Besides, evolving technologies such
as cloud computing already contribute to shifting various
services to the net, eliminating the need to implement them
straight on devices. Consequently, such tendencies and
evolving use of e-services only testifies one more impor-
tant requirement for embedded design – assuring system
interoperability.

Agent paradigm, acknowledged by the research
community as a rising tool for solving complex problems
[1, 2], can be a good alternative for developing intelligent
embedded systems as it offers several advantages over
traditional methods: high level of abstraction, easy system
modification and extensibility, integrity, effective commu-
nication and other relevant features [3 - 6]. Thus it is rea-
sonable to use the experience and the results of the ongo-
ing research in this field and adapt an agent-based method-
ology for developing embedded applications for mecha-
tronic systems domain. The selection of existing agent-
based methodologies is broad [7, 8], however there exists
no specialized methodology covering the required embed-

ded systems domain criteria, nor the requirements for their
development process. JADE – a java-based middleware [9]
is chosen as the most suitable tool for the implementation
of intelligent embedded systems that eases the develop-
ment process assuring the features, required by every
agent: message transport, behaviour scheduling, ontology,
FIPA communication protocols, etc. Nevertheless, various
domain specialists have to program specific applications
from the beginning to the end. Therefore, this tool is insuf-
ficient to ease and accelerate the development of intelligent
embedded systems as much as it could be done by reusing
domain-specific components.

This paper presents an agent-based embedded
control system design methodology for mechatronic sys-
tems. Embedded systems framework serving as a founda-
tion for the methodology, has been created, tested and
evaluated experimentally on prototype systems [10, 11]. It
proved that the methodology simplifies and accelerates the
implementation stage as well as the design stage of intelli-
gent embedded system development process. Besides, it
assures a high level of component interoperability and sys-
tems extensibility degree. Smart refrigerator control appli-
cation, presented in this paper illustrates several steps of
the proposed methodology and validates its feasibility for
developing intelligent mechatronic system applications.

2. System design method

This section presents the basic steps of the pro-
posed embedded system design process, which are further
detailed by the proposed methodology, explaining the
analysis, design, the integration, realization, testing and
deployment stages.

According to the characteristics of intelligent em-
bedded systems (IES) and the requirements to shorten their

β

Fig. 1 Intelligent embedded system (IES) design process

http://dx.doi.org/10.5755/j01.mech.17.5.735

mailto:losta@ifko.ktu.lt
mailto:ekaza@ifko.ktu.lt
mailto:rimvydas.gaidys@ktu.lt

 552

development process, two separate processes are per-
formed in their design process (Fig. 1):

• the development of system framework, including
reusable generic IES architecture and generic agent-
components, as IES domain engineering;

• the development of IES applications, based on the
results, obtained during the first process.

The results of domain engineering process were
presented in [10, 11], while the methodology for IES ap-
plications development is introduced below.

Fig. 2 Intelligent embedded system design methodology

The proposed IES methodology covers the analy-
sis, design, implementation and deployment phases. The
required steps and the results obtained in each of them are
presented in Fig. 2. The goal of the analysis phase is to
specify the system and its structure. It is achieved by speci-
fying the system organization, which is perceived as a set
of agent roles, their connections and communication pat-
terns. Analysis phase results in the construction of certain
models: goal, environment, roles and interaction models.

• Goal model. Based on system specification and re-
quirements, the system is divided into separate subsystems
and associated system goals are identified. Goals represent
what the system has to achieve. However, talking about
real time systems, the achievement of system goals de-
pends on the requirements of time. IES are treated as soft
real time systems, so, defining system goals requires speci-
fying not only what the system is supposed to achieve, but
also when the tasks should be performed.

• Environment model. In this step, the components of
system environment are identified. The agent system is
separated from the environment, where it resides, and the
resources that it will be consuming are identified. Embed-
ded systems by their nature are part of bigger systems,
therefore the environment model is important because it

represents environmental characteristics. Hardware sensors
and actuators are treated as a part of environment and the
data they provide are resources, read, consumed or modi-
fied by agents.

• Preliminary role model. Agent role defines the func-
tionality and behaviour, which is expected from the agent
type, performing the role. Preliminary system roles are
identified according to the system goals. Preliminary role
is specified by two attributes: responsibilities and permis-
sions. Responsibilities are a key attribute that describes the
functionality of a role. They are defined by taking into ac-
count three issues: system goals, communication between
agents and interaction between agent and its environment.
There are two types of responsibilities: liveness and safety.
Safety responsibilities define the conditions that have to be
maintained through the existence of a role, e.g. assure, that
the temperature stays between 15 and 25 degrees. Liveness
responsibilities are expressions, describing the sequence of
activities and protocols, performed by a role. In order to
fulfill the responsibilities, the role has a set of permissions,
which state, what resources the role can read, modify or
generate (Table 1).

• Preliminary interaction model defines the communi-
cation between system roles. It is defined by the parame-
ters, depicted in Table 2.

• Agent organization. Organizational structure is one
of the most important things in designing agent systems,
because it outlines the coordination, subordination and
control issues. Preliminary system role and interaction
models identify system functionality independent of the
system structure. Thus, the restrictions, applied to whole
system are identified in this step.

• The preliminary role and interaction models are re-
vised in this step for two reasons: firstly, the reusable com-
ponent repository has to be taken into account; secondly –
if the organizational structure, chosen in the previous step
is different than identified in the proposed framework, it
might affect the roles and communication models. The
identified role and interaction models are compared to the
specifications of agent library components and revised.

The analysis stage results in identifying the cha-
racteristics of intelligent embedded systems and their envi-
ronment. These specifications are further used in designing
generic IES architecture. This stage is based on a proposed
design solution – embedded systems framework, which
encompasses generic reusable components, their internal
structure and generic architecture.

• The selection of the target application architecture is
the first solution to be made in this stage. As the develop-
ers can use the proposed system framework, it is modified
according to specifications, produced in the analysis phase.
The identified agents are ‘substituted’ to the generic sys-
tem architecture – thus obtaining the concrete application
architecture. Besides, the developers have to take into ac-
count that the framework proposes certain system man-
agement agents, that have to be included in all specific
architectures.

• Specific agent roles, identified in the analysis phase
are associated with generic component library specifica-
tions, which lead to the identification of required system
agent types and their internal structure. If there exists a
possibility to choose, which roles can be associated with
which agent types, it is left for the developer to make these

 553

decisions.
• The result of this step is system deployment dia-

gram. It is obtained from the system architecture and the
developers only need to specify how system agents will be
deployed on physical platforms.

In the stage of integration, realization and testing,
the system is being implemented and tested. The imple-
mentation is performed by integrating the reusable agent
components. Some components can be reused without
modifications, others – with setting required parameters or
little additional programming for adding specific service
logic. Agents are integrated, configured, executed and tes-
ted on the same programming environment – JADE plat-
form, complemented by domain specific components. In
the stage of the deployment, the designed system together
with the environment, where it is implemented and tested
is deployed on a selected physical platform.

3. Developing an intelligent inventory management

agent for the smart fridge system

This section presents a smart refrigerator control
application, created using the proposed methodology, more
focusing on intelligent inventory management agent as
several implementation details of intelligent fridge applica-
tion have already been presented in [11]. Creating the
smart fridge control application, several goals were defined
at the analysis stage: maintaining the proper temperature,
controlling the light, monitoring the products as well as
optimization and planning of product orders. The IES
framework enabled the reuse of the whole temperature
control application, implemented during another experi-
ment [10]. Thus, only the last two goals were analyzed
further and lead to identification of required agent types –
namely sensor agent for RFID sensor; information process-
ing agent for implementing the role of a product monitor
agent, as well as intelligent decision agent – for realizing
the role of product planning and ordering agent.

Fig. 3 Smart fridge control application deployment archi-

tecture

The smart refrigerator system architecture and its
deployment scenario are depicted in Fig. 3. The system is
deployed on two hosts. One of the hosts is a master host
which is responsible for the platform and configuration
management, another one is smart fridge control host.
Master host also runs agents responsible for interaction
with the end-user. Intelligent inventory planning agent is
deployed on master host as well.

The smart fridge control host is a small embedded
device, running embedded Java Virtual Machine. Every
sensor/actuator is associated with corresponding agents.

Main services, associated with appropriate service agents,
include: product management, fridge temperature control,
light control and user notification. Product management
service includes automatic product identification through
RFID sensor, as well as product amount monitoring and
absence detection. Fridge temperature control agent is a
service agent which has established connections to tem-
perature sensor and on/off switch 1. This agent periodically
measures temperature and adjusts heating switch state ac-
cording to the control algorithm. Light control service is
responsible for triggering the light switch (on/off switch 2),
when the associated door sensor indicates that the fridge
door is open/closed. The system is designed to warn the
user when the product expires, the amount of the product is
getting low, or in case, the door of the fridge is left open
for a longer time.

Inventory management is an important issue for
most wholesale and retail companies, as they need to main-
tain the inventories of goods to be available for purchase as
well as reduce their storage costs. Planning and scheduling,
ensuring that the needed materials arrive “just-in-time” for
their use, should be an important part of companies’ inven-
tory policy. Smart fridge product monitoring and automatic
ordering tasks correspond to the problems, handled by the
inventory theory applications.

The goal of inventory management agent is to
predict an optimal amount of the required products, the
time and the size of the order, taking into account the reli-
ance between expenses on product price, their amount,
storage and delivery. The functionality, behavior as well as
communication of the inventory planner agent are depicted
in the role (Table 1) and interaction models (Table 2).

Table 1

Role Inventory planning agent
Description Collects product consumption statictics,

analyses data and decides what orders
should be completed.

Protocols
and activities

PublishEvent, PublishAction, PublishServi-
ceInDF, RegisterToEvents, GetConsump-
tionData, ProcessInformation, SaveData,
UpdateData, GetOrderQuery, AnalyzeData,
MakeDecision, SendOrderProposal.

Permissions Read Message content, Product
data, Agent state

Create Consumption statistics
Change Agent state, Consumption

statistics
Responsibili-
ties

Liveness

Safety

INVENTORY PLANNER = (ConfiguresI-
tself).(CollectsConsumptionStatistics)||(Co
mputes).
ConfiguresItself = PublishesEvent. Pub-
lishesAction. PublishesServiceInDF. Con-
nectsDeviceAgents. RegistersToEvents.
CollectsConsumptionStatistics = GetCon-
sumptionData. ProcessInformation. Save-
Data. UpdateData.
Computes = GetOrderQuery. AnalyzeData.
MakeDecision. SendOrderProposal.

Always ensure communication with data
providing agents.

 554

Table 2

Protocol SendQuantity
Request

SendProduct
Data

SendCon-
sump-
tionData

Initiator Product ma-
nager agent

RFID Sensor
agent

Product ma-
nager agent

Respon-
der

Inventory
planner agent

Product ma-
nager agent

Inventory
planner agent

Respon-
ding
action

SendOrder
Proposal

Goal After getting
the quantity
request, in-
ventory plan-
ner agent
analyses the
data and com-
putes the
required
amount of
products.

RFID sensor
agent reads
product data
putting it in
and taking it
out of the
fridge and
sends the data
to the product
manager
agent.

Inventory
planner agent
registers to
the event for
getting the
information
about consu-
med products
and after get-
ting it, saves
the data to the
product con-
sumption
registry.

Inventory planner agent service logic and decision

making mechanism. Modern companies use scientific in-
ventory management systems that are usually based on
operations research and comprise the following steps:

1. formulation of a mathematical model describ-
ing the behaviour of the inventory system;

2. seeking an optimal inventory policy with re-
spect to this model;

3. using a computerized information processing
system to maintain a record of the current inventory levels;

4. using this record of current inventory levels,
applying the optimal inventory policy to signal when and
how much to replenish inventory.

Service logic and the decision making mechanism
of inventory planner agent chooses an appropriate mathe-
matical model, depending on the given situation and the
input data, making an optimal decision, when and how to
replenish the products in the fridge. The agent logic is im-
plemented based on three mathematical inventory man-
agement models: economic order quantity model (EOQ),
EOQ model with planned shortages or EOQ model with
quantity discounts [12]. The first model is presented below
for more details.

The most common inventory situation faced by
manufacturers, retailers, and wholesalers is that stock lev-
els are depleted over time and then are replenished by the
arrival of a batch of new units. A simple model represent-
ing this situation is the following economic order quantity
model or, for short, the EOQ model.

Units of the product under consideration are as-
sumed to be withdrawn from inventory continuously at a
known constant rate, denoted by a; that is, the demand is a
units per unit time. It is further assumed that inventory is
replenished when needed by ordering (through either pur-
chasing or producing) a batch of fixed size (Q units),
where all Q units arrive simultaneously at the desired time.
For the basic EOQ model to be presented first, the only
costs to be considered are:

• K - setup cost for ordering one batch,

• c - unit cost for purchasing each unit,
• h - holding cost per unit per unit of time held in

inventory.
The objective is to determine when and by how

much to replenish inventory so as to minimize the sum of
these costs per unit time.

We assume continuous review, so that inventory
can be replenished whenever the inventory level drops
sufficiently low. We shall first assume that shortages are
not allowed. With the fixed demand rate, shortages can be
avoided by replenishing inventory each time the inventory
level drops to zero, and this also will minimize the holding
cost.

To summarize, in addition to the costs specified
above, the basic EOQ model makes the following assump-
tions.

1. A known constant demand rate of units per unit
time.

2. The order quantity (Q) to replenish inventory
arrives all at once just when desired, namely, when the
inventory level drops to 0.

3. Planned shortages are not allowed.
In regard to assumption 2, there usually is a lag

between when an order is placed and when it arrives in
inventory. The amount of time between the placement of
an order and its receipt is referred to as the lead time. The
inventory level at which the order is placed is called the
reorder point. To satisfy assumption 2, this reorder point
needs to be set at the product of the demand rate and the
lead time. Thus, assumption 2 is implicitly assuming a
constant lead time. The time between consecutive replen-
ishments of inventory is referred to as a cycle. The total
cost per unit time T is obtained from the following compo-
nents. Production or ordering cost per cycle is equal to

K + cQ (1)

The average inventory level during a cycle is Q/2
units, and the corresponding cost is hQ/2 per unit time.
Because the cycle length is Q/a, Holding cost per cycle is
equal to

2

2
hQ

a
 (2)

Therefore, total cost per cycle is equal to

2

2
hQK cQ

a
+ + (3)

so the total cost per unit time is

2 (2)
/ 2

K cQ hQ a aK hQT a
Q a Q

+ +
= = + c + (4)

The value of Q, say Q*, that minimizes T is found by set-
ting the first derivative to zero

2 0
2

dT aK h
dQ Q

= − + = (5)

so that

 555

2* aKQ
h

= (6)

which is the well-known EOQ formula. The corresponding
cycle time, say t*, is

* 2* Qt
a a

= =
K
h

. (7)

4. Inventory planning experiments and results

During the first experiment, the agent is given
such initial data: it is known that the demand for product A
is about 100 units every day. The setup cost for ordering
one batch is 100 LTL. The holding cost per unit is
0.02 LTL per day. Having this data the agent has to inform
about the ordering time of product A and the size of the
batch, considering the time between the placement of an
order and its receipt (lead time) is 12 days. From the given
data, the agent identifies that for calculating the order cycle
and the size of the batch it has to use the EOQ model.

The optimal order size Q* = 1000 units, while the
length of the cycle t* = 10 days. As the lead time is 12
days and the cycle of the order is 10 days, the new order
has to be placed when the remainder of product A is
enough to satisfy its demand for 2 days. Thus, 1000 units
of product A are ordered, when its remainder is 200 units
(Fig. 4). After getting the message about the remainder of
product A, the agent analysis the message and decides
upon the necessity to make a new batch order and informs
the user about the taken decision.

Fig. 4 Product order prediction using EOQ model

In the next experiment, the agent is given such
initial data: the demand for product C is 100 units every
day. The setup cost for ordering one batch is 100 LTL. The
holding cost per unit is 0.02 LTL per day. The price for
one unit, depending on the size of batch is: 11 LTL, if the
order is 500 units; 10 LTL, if the order size is between 500
– 7000 units and 9.5 LTL, if the order size is more than
7000 units. Having this data and evaluating the cost for
holding the inventory, the agent has to inform about the
optimal batch size for product C. From the given data, the
agent identifies that it has to apply the EOQ model with
quantity discounts.

The optimal order size here is Qopt = 1000 units,
which is enough for 10 days, while summing up the hold-

Fig. 5 Product order prediction using EOQ model with

quantity discounts

ing price for one day, Topt = 1020 LTL (Fig. 5). If the
price of the good would decrease up to 9 LTL, when order-
ing more than 7000 units, then the batch size would be
Q*3 = 7000 units, which would be enough for 70 days and
the price for one day would be T3 = 971.4 LTL. Similar
situation would be if the size of the batch, where a unit
price is 9.5 LTL could be decreased by 100 units (Fig. 5).
Consequently, after getting the message about the neces-
sity for good C reorder, the inventory planner agent ana-
lyzes the data and makes the decision about the optimal
amount of the order.

5. Conclusions

The proposed methodology simplifies and accel-
erates the implementation as well as the design stage of
embedded system development process. It assures a high
level of component interoperability and systems extensibil-
ity degree. Contrary to existing agent-based methodolo-
gies, it addresses specific embedded systems characteris-
tics – specification of system boundaries, the modelling of
goals and time requirements; specific design process re-
quirements – the adopted system development life-cycle
enables the redesign and gradual concretization of generic
design artefacts, assuring the reuse of generic agent com-
ponents and generic IES architecture.

References

1. Ning, K.J.; Yang, R.Q. 2006. MAS based embedded

control system design method and a robot development
paradigm, Journal of Mechatronics, vol. 16: 309-321.

2. Burmester, S.; Giese, H.; M¨unch, E.; Oberschelp,
O.; Klein, F.; Scheideler, P. 2008. Tool support for
the design of self-optimizing mechatronic multi-agent
systems, International Journal on Software Tools for
Technology Transfer (STTT), vol. 10, number 3: 207-
222, DOI: 10.1007/s10009-008-0067-0.

3. Xinglu, M.; Yingjie, Q. 2008. Research on embedded
agent system architecture, Proceedings of the 2008 In-
ternational Conference on Embedded Software and
Systems Symposia. Washington, DC, USA.

4. Jamont, J. P.; Occello, M. 2007. About some speci-
ficities of embedded multiagent system design. The
diamond method. IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology, Silicon Val-
ley: US.

5. Povilionis, A.; Bargelis, A. 2010. Structural optimiza-

 556

tion in product design process, Mechanika 1(81): 66-
70.

6. Čikotienė, D.; Bargelis, A. 2009. Research of quality
impact to the product design properties and characteris-
tics, Mechanika 5(79): 63-67.

7. Zohreh Akbari, O. 2010. A survey of agent-oriented
software engineering paradigm: Towards its industrial
acceptance, Journal of Computer Engineering Re-
search, vol. 1(2): 14-28.

8. Bergenti, F.; Cleizes, M.-P.; Zambonelli, F. 2004.
Methodologies and Software Engineering for Agent
Systems. The Agent-Oriented Software Engineering
Handbook, Kluwer.

9. Bellifemine, F.; Caire, G.; Greenwood, D. 2007. De-
veloping multi-agent systems with JADE. Wiley Series
in Agent Technology. ISBN 978-0-470-05747-6. Feb-
ruary.

10. Kazanavicius, E.; Kazanavicius, V.; Ostaseviciute L.
2009. Agent-based framework for embedded systems
development in smart environments. In Proceedings of
International Conference on Information Technologies
(IT 2009), Kaunas.

11. Kazanavicius, E.; Kazanavicius, V.; Ostaseviciute,
L. 2009. A reusable agent-based framework for smart
embedded systems. Solid State Phenomena: Mecha-
tronics Systems and Materials III: selected, peer re-
viewed papers from the 5th international conference
MSM 2009, Vilnius, Lietuva.

12. Chan, Alan H. S.; Ao, Sio-Iong. 2008. Advances in
Industrial Engineering and Operations Research.
Springer. ISBN 978-0-387-74903-7.

L. Kizauskiene, E. Kazanavicius, R. Gaidys

AGENTINĖMIS TECHNOLOGIJOMIS PAGRĮSTA
MECHATRONINIŲ SISTEMŲ PROGRAMINĖS
ĮRANGOS KŪRIMO METODIKA

R e z i u m ė

 Straipsnyje pristatoma agentinėmis technologijo-
mis pagrįsta mechatroninių sistemų programinės įrangos
kūrimo metodika. Pateikiamas eksperimentinio šios meto-
dikos taikymo pavyzdys – intelektinės išmaniojo šaldytuvo
sistemos prototipas.

L. Kizauskiene, E. Kazanavicius, R. Gaidys

AGENT-BASED METHODOLOGY FOR DEVELOPING
MECHATRONIC SYSTEMS SOFTWARE

S u m m a r y

 This paper presents an agent-based embedded
control system design methodology for mechatronic sys-
tems. The methodology is illustrated by an intelligent
fridge prototype system.

Received March 03, 2011
Accepted October 21, 2011

	ISSN 1392 - 1207. MECHANIKA. 2011. 17(5): 551-556
	Agent-based methodology for developing mechatronic systems software
	L. Kizauskiene*, E. Kazanavicius**, R. Gaidys***
	*Kaunas University of Technology, Studentų st. 50, 51368 Kaunas, Lithuania, E-mail: losta@ifko.ktu.lt
	**Kaunas University of Technology, Studentų st. 50, 51368 Kaunas, Lithuania, E-mail: ekaza@ifko.ktu.lt
	***Kaunas University of Technology, Studentų st. 65, 51369 Kaunas, Lithuania, E-mail: rimvydas.gaidys@ktu.lt
	1. Introduction
	2. System design method
	3. Developing an intelligent inventory management agent for the smart fridge system
	4. Inventory planning experiments and results
	5. Conclusions

	 L. Kizauskiene, E. Kazanavicius, R. Gaidys
	L. Kizauskiene, E. Kazanavicius, R. Gaidys
	AGENT-BASED METHODOLOGY FOR DEVELOPING MECHATRONIC SYSTEMS SOFTWARE

