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1. Introduction 

 

For the past decades, the composite materials are 

widely used in spacecraft and engineering industries be-

cause of their higher tensile strength and lower weight. 

Composite plate structures are often applied at elevated 

temperature environments. In such thermal circumstances, 

the thermal induced compressive stresses will be devel-

oped in the composite plates and consequently lead to the 

change in mechanical behaviors. The thermally induced 

behavior of composite plate plays an important role in the 

design of structural components in thermal environments. 

Thus, the studies on thermal vibration and buckling of 

composite plates are increasing considerably in recent 

years.  

Many investigations on thermally induced behav-

iors of composite plates are concerned with the thermal 

stability and vibration. The critical buckling temperatures 

of laminated plates based on a finite strip method were 

studied by Dawe and Ge [1]. In the pre-buckling stage, an 

in-plane thermal stress analysis was conducted first, and a 

buckling analysis was followed using the determined 

in-plane stress distribution. Wang et al. [2] presented the 

local thermal buckling of laminated plate using the delam-

inated buckling model. The analytical predictions for the 

critical temperature yielding the local delamination buck-

ling are shown to correlate well with experimental results. 

Shian and Kuo [3] developed a thermal buckling analysis 

method for composite sandwich plates. The results show 

that the buckling mode of sandwich plate depends on the 

fiber orientation in the faces and the aspect ratio of the 

plate. Thermal buckling analysis of cross-ply laminated 

hybrid composite plates with a hole subjected to a uniform 

temperature rise was investigated by Avci et al. [4]. The 

effects of hole size, lay-up sequences and boundary condi-

tions on the thermal buckling temperatures were investi-

gated. The equivalent mechanical loading concept was 

used to study various thermal buckling problems of simple 

laminated plate configurations by Jones [5]. The results 

were given in the form of buckling temperature change 

from the stress-free temperature against plate aspect ratio 

curves. Matsunaga [6] presented the thermal buckling of 

laminated plates using the principle of virtual work. Sever-

al sets of truncated mth order approximate theories were 

applied to solve the eigenvalue problems. Modal transverse 

shear and normal stresses could be calculated by integrat-

ing the equilibrium equations.  

The governing equations for determining thermal 

buckling of imperfect sandwich plates were developed by 

Zakeri and Alinia [7]. The buckling thermal stress remains 

unchanged for aspect ratios greater than five. The structur-

al optimization of a laminated plate subjected to thermal 

and shear loading was considered by Teters [8]. The opti-

mization criteria depend on two variable design parameters 

of composite properties and temperature. Thermal buckling 

analysis of composite laminated plates under uniform 

temperature rise was investigated by Shariyat [9]. A nu-

merical scheme and a modified instability criterion are 

used to determine the buckling temperature in a computer-

ized solution. A thermal buckling response of symmetric 

laminated plates subjected to a uniformly distributed tem-

perature load was presented by Kabir et al. [10]. The nu-

merical results were presented for various significant ef-

fects such as length-to-thickness ratio, plate aspect ratio 

and modulus ratio. Thermal buckling behavior of imperfect 

laminated plates based on first order plate theory was 

studied by Pradeep and Ganesan [11]. A decoupled ther-

mo-mechanical analysis is used to deal with the thermal 

buckling and vibration behavior of sandwich plates. The 

variation of natural frequency and loss factor with temper-

ature was studied by Owhadi and Shariat [12]. The plate 

was assumed to be under the longitudinal temperature rise. 

The effects of initial imperfections on buckling loads were 

discussed. A perturbation technique was used by Verma 

and Singh [13] to find the buckling temperature of lami-

nated composite plates subjected to a uniform temperature 

rise. It was found that small variations in material and ge-

ometric properties of the composite plate significantly af-

fect the buckling temperature of the laminated composite 

plate. Wu [14] investigated the stresses and deflections of a 

laminated plate under thermal vibration using the moving 

least squares differential quadrature method. The method 

provides rapidly convergent and accurate solutions for 

calculating the stresses and deflections. 

The thermal buckling behavior of the laminated 

plates subjected to uniform and/or non-uniform tempera-

ture fields was studied by Ghomshei [15]. The influence 

parameters of plate aspect ratio, cross-ply ratio and stiff-

ness ratio on the critical temperature were presented. Rath 

[16] the free behavior of laminated plates subjected to var-

ying temperature and moisture. A simple laminated plate 

model is developed for the vibration of composite plates 
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subjected to hygrothermal loading. The results showed the 

effects of geometry, material and lamination parameters of 

woven fiber laminate on the vibration of composite plates 

for different temperature. Ghugal [17] presented the flex-

ural response of cross-ply laminated plates subjected to 

thermo-mechanical loads. The shear deformation theory 

satisfies the shear stress free boundary conditions on the 

top and bottom surfaces of the plate. Thermal stresses for 

three-layer symmetric cross-ply laminated plates subjected 

to uniform linear and nonlinear and thermo-mechanical 

loads are obtained. The governing equations for laminated 

beams subjected to uniform temperature rise are derived by 

Fu [18]. The effects of the transverse shear effects and 

boundary conditions on the thermal buckling and post-

buckling of the beams are discussed. A differential quad-

rature method is applied to obtain the maximum buckling 

temperature of laminated composite by Malekzadeh [19]. 

The direct iterative method in conjunction with genetic 

algorithms is used to determine the optimum fiber orienta-

tion for the maximum buckling temperature. 

From the literature reviewed, researches on the 

vibration and buckling of initially stressed laminate plates 

under thermal environmental condition seem to be lacking. 

The vibration and stability behaviors of initially-stressed 

laminate plates have been investigated by Chen et al. 

[20-21] in recent years. The studies revealed that the initial 

stress in structures may significantly influence the behav-

iors of laminated plates. Therefore, while studying the 

thermal buckling and vibration behavior of laminate plates, 

the effect of initial stress should be taken into account. In 

this paper, the equilibrium equations for a laminated plate 

subjected to the arbitrary initial stress and thermal condi-

tion are established by using variation method. The tem-

perature field is assumed to be uniform plus linearly dis-

tributed through the plate thickness. The effects of various 

parameters on the critical temperature, natural frequencies 

and buckling loads in thermal environments are presented. 

 

2. Equilibrium equations 

 

Following a similar technique described by Bru-

nelle and Robertson [22] and Chen et al. [20-21], Hamil-

ton’s principle is applied to derive nonlinear equations of 

the composite plate including the effects of rotary inertia 

and transverse shear. For an initially stressed body which is 

in equilibrium and subjected to a time-varying incremental 

deformation, the Hamilton’s principle can be expressed as 

 
1

0

0
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where U, K, We and Wi are the strain energy, kinetic energy, 

work of external forces and internal forces, respectively; 

ij and ij are the stresses and strains; vi are the displace-

ments referred to the spatial frame;  is the density; Xi is 

the body force per unit initial volume and pi is the external 

force per unit initial surface area. The application of the 

minimum total energy principle leads to the general equa-

tions and boundary conditions. Assume that the stresses 

and applied forces are constant, and substitute Eq. (2) into 

Eq. (1). Then taking the variation and integrating the ki-

netic energy term by parts with respected to time, Eq. (1) 

becomes: 
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If a rectangular plate is considered, the equations 

can be rephrased in xy coordinates. The incremental dis-

placements are assumed to be of the following forms: 
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where ux, uy and w are the displacements of the middle 

surface in the x, y and z direction, respectively;x and y 

denotes the rotation angle about y and x axis, respectively. 

The two edges of a rectangular plate are set along x and y 

axes, respectively. The stress-strain relations are taken to 

be those of uncoupled linear thermal elasticity. Hence, the 

constitutive relations for the kth lamina including the 

thermal effect can be written as: 
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where Cij are the elastic constants of lamina; ij are thermal 

expansion coefficients and T is the temperature rise. The 

stress-displacement relations are found to be: 
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Substitute Eqs. (4)-(6) into Eq. (3), perform all 

necessary partial integrations and group the terms by the 
five independent displacement variations, ux, uy, w, x 

and y, to yield the following five governing equations: 
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where fx, fy, fz, mx and my are the lateral loadings. The arbi-

trary initial stresses are included in the stress resultants Nij, 

Mij and *

IJM . T

ijN , T

ijM  and *T

jjM  are thermal stress 

resultants. The coefficients associated with material pa-

rameters, initial stress, thermal stress resultants and rotary 

inertia are defined as: 
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where all the integrals are integrated through the thickness 

h of the plate from –h/2 to h/2.  

 

3. Solution of the governing equations 

 

Because the stability and vibration behaviors of 

the investigated initially stressed laminate composite plate 

are affected by various parameters, it would be difficult to 

present results for all cases. Thus, only the initial-

ly-stressed simply supported cross-ply laminate plate under 

the combined uniform and linear thermal loading is inves-

tigated. The lateral loads and body forces fx, fy, fz, mx and 

my are taken to be zero. The only nonzero initial stress is 

assumed to be (Fig. 1) 

/hzσ+=σσ mnxx 2 , (13) 

which comprises of the constant uniaxial stress n and 

bending stress m. Hence, the nonzero axial stress result-

ants are Nxx = hn, Mxx = Sh2n / 6 and *

xxM  = h3n / 12. 

The factor S = m / n denotes the ratio of a bending stress 

to a normal stress. For the cross-ply plate, the stiffness 

coefficients C16, C26 and C45 will be equal to zero in 

Eqs. (6) and (7).  
 

 

Fig. 1 A simply supported plate with initial stress 
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The combined uniform and linear temperature 

distribution is of the form as 

go
zTTT 2 , (14) 

where To is the uniform temperature rise and Tg is the 

temperature gradient. The nonzero thermal stress resultants 

are - ,
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For a simply supported laminated plate, the 

boundary conditions along the x-constant edges are: 
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and along the y-constant edges are: 
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For the simply supported plate, the displacement 

fields satisfying the geometric boundary conditions are 

given as follows: 

= ( ) ( ) ;

= ( ) ( ) ;

= ( ) ( ) ;

= ( ) ( ) ;

= ( ) ( ) .

mn

mn

mn

mn

mn

i t

x mn

i t

y mn

i t

mn

i t

x xmn

i t

y ymn

u h U cos m x / a sin n y / b e

u h V sin m x / a cos n y / b e

w h W sin m x / a sin n y / b e

cos m x / a sin n y / b e

sin m x / a cos n y / b e











 

 

 

   

   























 (17) 

All summations are summed up from m, n = 1 to 

 . For a buckling problem, 
ti mne


 is neglected in 

Eq. (17). Substituting the initial stress (13), temperature 

distribution (14) and displacement fields (17) into the gov-

erning Eqs. (8)-(12), and collecting the coefficients for any 

fixed values of m and n leads to the following eigenvalue 

equation: 

       

 

0 ;

, , , , ,
T

mn mn mn xmn ymn

C G

U V W

 

  

 



    

 (18) 

in which parameter  refers to the corresponding frequency 

or buckling coefficient. For the vibration problems, the 

coefficients of the symmetric matrix [C] and [G] are ex-

pressed as follows: 

  2 2 2 2

1 1 11 66
- -

T T

, xx xx yy
C A + N A N N      ; 

 1,2 12 66
=- +C A A  ; 

 2 2 2 2 2

1,4 66 11
C =-

T T

xx xx yy
M B / h B / h M M        ; 

 1,5 11 66
C =- B B / h ; 

  2 2 2 2

2,2 66 22
=- -

T T

xx xx yy
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5142 ,, CC  ; 

 2 2 2 2 2
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=[- + ]

T T
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h/AC 
554,3

-= ; 

  2 2 2 2

3,3 55 44
=- -

T T
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445,3

-= ; 

  2 2 2 2

4,4 11 2 66 55
=

* T* T*
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C D M D A / h M M         

 
; 

  2

4 5 12 66
+

,
C D D / h  ; 

  2 2 2 2 2

5,5 66 22 44
= + +

* T* T*

xx xx yy
C D M D A / h M M       

 
; 

1 1 2 2 3 3 1, , ,
G G G I    ; 2

35544
h/IGG ,,  ; 

m / a  ; b/n  . 

 

For the thermal buckling problem, the coefficients 

of matrix [C] are given by neglecting thermal induce 

stresses resultant terms in the stiffness matrix in Eq. (18) 

and the coefficients of matrix [G] are: 

T

yy

T

xx,,, NNGGG
22

332211
  ; 

T

yy

T

xx,, MMGG
22

5241
  ; 

*T

yy

*T

xx,, MMGG
22

5544
  . 

As to the buckling load problems, the coefficients 

of the symmetric matrix [C] are given by neglecting the 

initial stress resultant terms of the matrix [C]. The coeffi-

cients of the matrix [G] are: 

2

332211
 ,,, GGG ; 

h/SGG ,, 6
2

5241
 ; 

22

5544
12h/GG ,,  . 
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4. Results and discussion 

 

For verifying the present computer program, the 

close agreements between the present results and those in 

Matsunaga [23], Liu and Huang [24] for cross-ply plates as 

shown in Tables 1-2 demonstrate the accuracy and effec-

tiveness of the present method. Parametric studies are car-

ried out to examine the effects of various variables on the 

vibration and stability response of laminate plates under 

thermal environments. The following non- dimensional 

natural frequency (=
y

Eh/b
22

 ), buckling coeffi-

cient (
yxxf E/NbK

2
 ) and thermal buckling coefficient 

( 4
10yyTT  ) are defined and used throughout the vi-

bration and stability study. If the stress is tensile, then the 

buckling coefficient Kf is positive. There is no initial stress 

when Kf = 0 and S = 0. The critical buckling temperature is 

denoted by Tcr. 

 

Table 1 

Comparison of minimum critical temperatures of 

three-layer cross-ply laminated composite plates  

[0o/90o /0o] 
 

a / h Matsunaga [23] Present 

20/10 0.3334 0.3438 

20/6 0.2465 0.2554 

20/5 0.2184 0.2216 

20/4 0.1763 0.1802 

20/3 0.1294 0.1299 

20/2 0.0746 0.0731 

20 0.0230 0.0219 

 

Table 2 

Comparison of vibration frequencies of a [0/90]s square 

plate in thermal environment 
 

To Source 
xx /yy 

-0.05 0.1 0.2 0.3 

-50 Liu [24] 15.149 15.247 15.320 15.394 

Present 15.165 15.277 15.351 15.425 

0 Liu [24] 15.150 15.150 15.150 15.150 

Present 15.179 15.179 15.179 15.179 

50 Liu [24] 15.164 15.052 14.978 14.902 

Present 15.193 15.081 15.006 14.930 
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Fig. 2 Effect of modulus ratio on critical temperature pa-

rameter of plates (a / b = 1; a / h = 10; Kf = 0; S = 0; 

Tg / To = 0) 

Fig. 2 presents the effect of modulus ratio on the 

thermal buckling temperature of plates with different stack 

layers. The critical temperature increases monotonically as 

the modulus ratio or/and layer number increase. The criti-

cal temperatures of eight-layer plates under different tem-

perature gradient Tg are given in Table 3. The increasing 

temperature gradient reduces the thermal buckling temper-

ature, and its influence on the critical temperature is less 

than the layer number. The effects of modulus ratio and 

span ratio on critical temperature parameters are shown in 

Fig. 3. The buckling temperature of plate with a smaller 

span ratio is always higher than that with a larger span 

ratio, especially for the plate with a higher modulus ratio. 

Thus, with a higher modulus, higher stacking number of 

layer, lower span ratio and lower gradient temperature, the 

laminated plate has a higher thermal buckling temperature. 
 

Table 3 

Effect of gradient temperature on critical temperature  

parameter of plates with different modulus ratio 

(a / b = 1; a / h = 10; n = 8; Kf = 0; S = 0) 
 

Tg / To 
Ex / Ey 

5 10 20 30 40 50 

0 4.4621 6.3727 9.1758 11.0261 2.2410 13.0226 

5 4.4545 6.3634 9.1653 11.0161 12.2320 13.0147 

10 4.4321 6.3355 9.1340 10.9861 12.2050 12.9911 

20 4.3467 6.2285 9.0125 10.8688 12.0990 12.8981 

40 4.0580 5.8585 8.5775 10.4380 11.7016 12.5443 
 

E
x
/E

y

10 20 30 40 50

T
cr

0

5

10

15

20

25

30

a/h=5

a/h=10

a/h=20

a/h=40

a/h=80

 

Fig. 3 Effect of span ratio and modulus ratio on critical 

temperature parameter under uniform temperature 

rise (a / b = 1; n = 8; Kf = 0; S = 0; Tg / To = 0) 
 

The effect of buckling coefficient on the natural 

frequency of plates under various uniform temperature 

rises can be observed in Fig. 4. The natural frequency de-

creases with the increasing initial compressive stress and 

temperature rise. The buckling load can be obtained when 

the natural frequency approaches zero. Meanwhile, the 

plate under a lower temperature rise has a greater buckling 

coefficient. Fig. 5 shows the effect of modulus ratio on the 

natural frequency of laminated plates. The laminate plate 

with higher modulus ratio has a larger vibration frequency 

and higher buckling load. 

The buckling load and natural frequency of lami-

nate plate with different layer numbers and modulus ratios 

under uniform temperature rise are shown in Tables 4-5. 

The plate with larger stack layer number or/and higher 

modulus ratio has a higher critical buckling load and natu-
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ral frequency. It can also be observed that the buckling 

load and natural frequency decreases steadily with the in-

creasing uniform temperature rise. Thus, the two-layered 

plate with smallest modulus ratio and under higher tem-

perature rise will possess the smallest buckling load and 

natural frequency. 
 

K
f

-12 -10 -8 -6 -4 -2 0 2



0

2

4

6

8

10

12

To/Tcr=0

To/Tcr=0.25

To/Tcr=0.5

To/Tcr=0.75

 
Fig. 4 The vibration frequency versus the buckling coeffi-

cient under uniform temperature rise (a / b = 1; 

a / h = 10; n = 8; S = 0; Ex / Ey = 10; Tg / To = 0) 
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Fig. 5 The vibration frequency versus the buckling coeffi-

cient under various modulus ratio (a / b = 1; 

a / h = 10; n = 8; S = 0; To / Tcr = 0.5; Tg / To = 0) 
 

Table 4 

Effect of layer number and modulus ratio on critical  

buckling coefficient of plates under various uniform  

temperature rise (a / b = 1, a / h = 10, S = 0, Tg
 / To = 0) 

 

n To
 / Tcr 

Ex
 / Ey 

5 10 20 30 40 50 

2 

0 5.1392 6.1869 8.0733 9.8419 11.5230 13.1266 

0.25 3.8544 4.6402 6.0549 7.3815 8.6422 9.8450 

0.5 2.5696 3.0935 4.0366 4.9210 5.7615 6.5633 

0.75 1.2848 1.5468 2.0183 2.4606 2.8808 3.2817 

4 

0 6.4432 9.4152 14.6917 19.2579 23.2504 26.7707 

0.25 4.8324 7.0614 11.0188 14.4434 17.4378 20.0780 

0.5 3.2216 4.7076 7.3459 9.6290 11.6252 13.3853 

0.75 1.6108 2.3538 3.6729 4.8145 5.8126 6.6926 

6 

0 6.6812 9.9874 15.7990 20.7515 25.0224 28.7425 

0.25 5.0109 7.4905 11.8492 15.5636 18.7668 21.5569 

0.5 3.3406 4.9937 7.8995 10.3757 12.5112 14.3712 

0.75 1.6703 2.4968 3.9497 5.1878 6.2556 7.1855 

8 

0 6.7642 10.1858 16.1786 21.2585 25.6186 29.4008 

0.25 5.0731 7.6394 12.1340 15.9438 19.2139 22.0506 

0.5 3.3821 5.0929 8.0893 10.6292 12.8092 14.7003 

0.75 1.6910 2.5465 4.0446 5.3146 6.4046 7.3501 

Table 5 

Effect of layer number and modulus ratio on the natural 

frequency of plates under various uniform temperature rise 

(a / b=1; a / h=10; Kf = 0; S = 0; Tg
 / To = 0) 

 

n To
 / Tcr 

Ex
 / Ey 

5 10 20 30 40 50 

2 

0 7.1219 7.8142 8.9264 9.8558 10.6643 11.3822 

0.25 6.1678 6.7674 7.7305 8.5354 9.2356 9.8573 

0.5 5.0360 5.5256 6.3119 6.9692 7.5409 8.0485 

0.75 3.5610 3.9073 4.4632 4.9280 5.3323 5.6912 

4 

0 7.9745 9.6397 12.0417 13.7866 15.1484 16.2548 

0.25 6.9061 8.3483 10.4284 11.9395 13.1189 14.0771 

0.5 5.6388 6.8164 8.5148 9.7486 10.7116 11.4939 

0.75 3.9873 4.8200 6.0209 6.8934 7.5743 8.1274 

6 

0 8.1204 9.9284 12.4872 14.3112 15.7151 16.8428 

0.25 7.0325 8.5982 10.8143 12.3939 13.6097 14.5863 

0.5 5.7420 7.0204 8.8298 10.1196 11.1123 11.9097 

0.75 4.0602 4.9642 6.2436 7.1556 7.8576 8.4214 

8 

0 8.1707 10.0265 12.6364 14.4850 15.9012 17.0346 

0.25 7.0760 8.6832 10.9434 12.5444 13.7708 14.7524 

0.5 5.7776 7.0899 8.9353 10.2424 11.2438 12.0453 

0.75 4.0853 5.0133 6.3182 7.2425 7.9506 8.5173 

 

The effect of different temperature gradient on 

buckling load and natural frequency of plates is presented 

in Tables 6-7. When the linear gradient temperature in-

creases the buckling load and natural frequency coefficient 

slightly decrease. The laminated plate with lower modulus 

ratio and under higher uniform temperature and tempera-

ture gradient has a smaller critical buckling and vibration 

frequency. The influence of temperature gradient on the 

buckling load and natural frequency for laminate plates is 

less apparent than that of uniform temperature. 

Table 6 

Effect of linear temperature rise on the critical buckling 

coefficient (a / b = 1; a / h = 10; n = 8; S = 0) 
 

Ex
 / Ey To

 / Tcr 
Tg

 / To 

0 5 10 20 40 

10 

0 10.1858 10.1858 10.1858 10.1858 10.1858 

0.25 7.6394 7.6385 7.6356 7.6243 7.5792 

0.5 5.0929 5.0892 5.0779 5.0327 4.8515 

0.75 2.5465 2.5380 2.5126 2.4109 2.0013 

40 

0 25.6186 25.6186 25.6186 25.6186 25.6186 

0.25 19.2139 19.2127 19.2092 19.1950 19.1381 

0.5 12.8092 12.8045 12.7903 12.7335 12.5049 

0.75 6.4046 6.3939 6.3620 6.2338 5.7151 

Table 7 

Effect of linear temperature rise on the natural frequency 

(a / b = 1; a / h = 10; n = 8; Kf = 0; S = 0) 
 

Ex
 / Ey To

 / Tcr 
Tg

 / To 

0 5 10 20 40 

10 

0 10.0265 10.0265 10.0265 10.0265 10.0265 

0.25 8.6832 8.6827 8.6811 8.6747 8.6490 

0.5 7.0899 7.0872 7.0794 7.0478 6.9198 

0.75 5.0133 5.0050 4.9799 4.8780 4.4444 

40 

0 15.9012 15.9012 15.9012 15.9012 15.9012 

0.25 13.7708 13.7704 13.7691 13.7640 13.7436 

0.5 11.2438 11.2418 11.2355 11.2105 11.1095 

0.75 7.9506 7.9440 7.9241 7.8439 7.5105 

 

Variations of critical temperature and natural fre-

quency with the linear temperature change for initially 

stressed laminate plates are shown in Tables 8-9. It is evi-
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dent that the compressive initial stress (Kf < 0) produces a 

decreasing effect on the critical temperature and natural 

frequency, and the tensile initial stress has a reverse effect. 

Likewise, the initially stressed laminate plate with higher 

modulus ratio has a larger critical temperature than the one 

with lower modulus ratio.  

 

Table 8 

Effect of initial stresses on the critical temperature of 

plates under linear temperature rise  

(a / b = 1; a / h = 10; n = 8; S = 0) 
 

Ex
 / Ey Kf 

Tg
 / To 

0 5 10 20 40 

10 

4 8.8753 8.8571 8.8034 8.5996 7.9259 

0 6.3727 6.3634 6.3355 6.2285 5.8585 

-4 3.8702 3.8667 3.8564 3.8161 3.6697 

40 

4 14.1523 14.1402 14.1042 13.9628 13.4365 

0 12.2410 12.2320 12.2050 12.0990 11.7016 

-4 10.3297 10.3233 10.3041 10.2284 9.9425 

 

Table 9 

Effect of initial stresses on the natural frequency of plates 

under linear temperature rise  

(a / b = 1, a / h = 10, n = 8, S = 0, To
 / Tcr = 0.5) 

 

Ex
 / Ey Kf 

Tg
 / To 

0 5 10 20 40 

10 

4 9.4734 9.4714 9.4655 9.4419 9.3468 

0 7.0899 7.0872 7.0794 7.0478 6.9198 

-4 3.2844 3.2788 3.2617 3.1927 2.8991 

40 

4 12.8803 12.8785 12.8731 12.8512 12.7632 

0 11.2438 11.2418 11.2355 11.2105 11.1095 

-4 9.3244 9.3219 9.3144 9.2842 9.1620 

 

The effect of bending stress ratio on the critical 

buckling coefficient for initially stressed plates under uni-

form temperature is given in Table 10. As can be seen, the 

increasing bending stress ratio decreases the critical buck-

ling load. The influence of bending stress on the natural 

frequency of initially stressed plates under a fixed uniform 

temperature is presented in Table 11. The vibration fre-

quency decreases with the increase in bending stress. 

However, the natural frequency is not affected by the 

increasing bending stress when the plate is subject to the 

pure bending stress only. The lowest natural frequency can 

be observed for the plate with a lower modulus ratio and 

under a higher bending stress. 
 

Table 10 

Effect of bending ratios on critical buckling coefficient of 

plates under different uniform temperature rise  

(a / b = 1, a / h = 10, n = 8, Tg
 / To = 0) 

 

Ex
 / 

 Ey 
To

 / Tcr 
S 

0 10 20 30 40 50 

10 

0 10.1858 10.1263 9.9553 9.6925 9.3639 8.9952 

0.25 7.6394 7.6058 7.5084 7.3560 7.1608 6.9358 

0.5 5.0929 5.0780 5.0341 4.9641 4.8721 4.7627 

0.75 2.5465 2.5427 2.5316 2.5135 2.4890 2.4587 

40 

0 25.6186 25.5432 25.3213 24.9643 24.4897 23.9190 

0.25 19.2139 19.1715 19.0461 18.8430 18.5704 18.2383 

0.5 12.8092 12.7904 12.7343 12.6429 12.5186 12.3650 

0.75 6.4046 6.3998 6.3857 6.3625 6.3305 6.2903 

 

 

 

Table 11 

Effect of initial bending stress on the natural frequency of 

plates under uniform temperature rise  

(a / b = 1, a / h = 10, n = 8, To
 / Tcr = 0.5, Tg

 / To = 0) 
 

Ex
 / 

Ey 
Kf 

S 

0 10 20 30 40 50 

10 

4 9.4734 9.4685 9.4540 9.4297 9.3956 9.3514 

0 7.0899 7.0899 7.0899 7.0899 7.0899 7.0899 

-4 3.2844 3.2704 3.2281 3.1563 3.0528 2.9140 

40 

4 12.8803 12.8796 12.8775 12.8739 12.8690 12.8626 

0 11.2438 11.2438 11.2438 11.2438 11.2438 11.2438 

-4 9.3244 9.3235 9.3205 9.3156 9.3088 9.3000 

 

5. Conclusions  

 

The vibration and buckling behaviors of initially 

stressed and thermally stressed laminate plates have been 

described and discussed in this paper. The results demon-

strate the influence of the modulus ratio, number of layer, 

initial stress and thermal stress on the vibration and buck-

ling behaviors of laminate plates. Following the above 

discussions, the preliminary results are summarized as fol-

lows: 

1. The modulus ratio, number of layer and uniform tem-

perature has an apparent influence on natural fre-

quency and buckling load. They are slightly affected 

by the temperature gradient rise and bending stress. 

2. With the increasing modulus ratio and number of layer, 

the critical temperature, buckling load and natural 

frequency increase. The uniform temperature has a 

reverse effect. 

3. The compressive stress significantly reduces the natu-

ral frequency and critical temperature but the tensile 

stress produces an opposite effect. 
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Chun-Sheng Chen, Wei-Ren Chen, Hung-Wei Lin 

THERMALLY INDUCED STABILITY AND  

VIBRATION OF INITIALLY STRESSED LAMINATED 

COMPOSITE PLATES 

S u m m a r y 

In this paper, the thermal effect on the buckling 

and vibration of laminated composite plates with an arbi-

trary initial stress is presented. The governing equations 

including the transverse shear deformation effects are es-

tablished using the variation method. The initial stress is 

taken to be a combination of pure bending stress and a 

uniform normal stress in the example problems. Tempera-

ture distribution in the laminate plate is assumed to be 

combined uniform and linear temperature change in the 

transverse direction. The effects of various parameters on 

the thermal induced vibration and stability of laminated 

composite plates are studied. It is found that the initial 

stress, rise temperature and elastic modulus cause drastic 

changes in the thermal vibration and buckling behavior of 

laminated composite plates.  

 

Keywords: thermal effect, buckling, vibration, laminated 

composite plate, initial stress. 
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