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1. Introduction

Development of technologies for the production
of composite structures, allowing forming materials with
specific strength and performance properties has resulted
in their frequent use in machinery and construction engi-
neering. The homogenous components selected in suitable
proportions, when combined together, provide greater
rigidity and strength, while reducing the weight.

The composite materials are characterized by
macroscopic inhomogeneity of their structures. Forced
compliance of surface displacements in relation to combi-
nation of components with different rigidity and potential
presence of discontinuities in materials or sharp inclusions
which cause local high stress gradients might be observed
here. Such concentrators can generate a singular stress
field of qualitatively different nature than in the case of
stress raisers arranged in a homogeneous material. In many
theoretical works on sharp corners with different boundary
conditions [1-5] it has been proved that the exponent A can
take different real or complex values.

Mechanical description of the stress fields in flat
rigid inclusion area was dealt with by many scientists [6-
11]. Wang et al. [6] have shown that for inclusions located
on a homogeneous material the stress fields were described
by identical exponent as in case of the crack. Ballarini [7]
proposed, in form of integral equations, equations describ-
ing the stress field and a strict solution of the stress intensi-
ty factors. Wu [8] and Ballarini [9] extended it to an issue
of inclusions located at the interface. Ballarini suggested
functions of complex potentials [12] to be used for analysis
of the issues. Assuming that a flat, rectangular disk is im-
pacted infinitely by tensile loads he has received, in a
complex form, dependences describing components of
stress at the sharp tip of the inclusion. Furthermore, he
gave a solution close to the stress intensity factors used in
description of the tested fields.

The analytical dependences for calculating coeffi-
cients K, and K;; [9] can only be used assuming that on the
plate there is an infinitely applied operating longitudinal
and transverse tensile load. In case of finite dimensions of
the component or the presence of additional inclusions or
cracks when introducing abnormal stress distribution, it is
necessary to use methods of determining numerical values
for the sought coefficients.

This was set in the work by Dong [13], Mochalov
and Sil'vestrov [14] for different configurations of inclu-
sions and cracks using the appropriate integral equations.
Basing on comparison of stresses obtained using the BEM
with the analytical solution, Lee and Kwak [15] have de-
fined the stress intensity factors of the first particular
member.

2. Main purposes of the work

In this case, alike the issue of interfacial crack, the
exponent is a complex number. Thus, the stress fields have
an oscillating feature [2], which hinders their analytical
description. The use of fracture mechanics hypotheses
based on local stress fields (eg Sih, McClintock) requires
oscillations to be eliminated from the analytical descrip-
tion. Therefore the main purpose of this work is to obtain
an analytical description of the mechanical fields without
applying oscillation. In order to get such description the
classic definition of stress intensity factors K; and K;; with

appropriately modified counterparts Kf' and Kf,' needs

to be replaced taking into account oscillating nature of the
singular stress field. In the literature there can rarely be
found an analytical description of fields of stresses and
displacements in the area of sharp inclusions at the inter-

face with use of the so-modified actual coefficients K/

and Kﬁ' . It was necessary to find relationship between the

classically defined stress intensity factors K, and K, as
well as an adopted analytical description of the modified

K/ and K/ . Another purpose of the study was to devel-
op a method on how to calculate the modified stress inten-
sity factors Kj’”. In this case, in order to determine the

value of modified coefficients K;* and K and also high-

er order terms coefficients of the asymptotic solutions, the
FEM has been applied, what found its positive verification
for issues related to the interfacial crack [16].

3. The method and the results of analytical calculations

The approach proposed in the work by Parton and
Perlin [17] served basis for obtaining, as an asymptotic,
analytical description of the fields of stresses and dis-
placements at the tip of a sharp rigid inclusion (using mod-
ified stress intensity factor) (Fig. 1).

Fig. 1 Sharp, rigid inclusion located on border of merger of
two elastic materials
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Parton and Perlin took into consideration a flat,

sharp corner of side angle 24, found as a result in a linear-
elastic material, the polar coordinate system (r, ¢) posi-
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Four independent constants A, B, C, D can be de-
termined from the boundary conditions of concerned prob-
lems, while the value of the exponent 4 is determined by
characteristic equation representing the determinant zero
boundary conditions.

Fig. 2 Location of the tip of a sharp notch in linear-elastic
material

Fig. 3 Sharp, rigid inclusion located on the interface

When considering this work an issue of sharp, rig-
id inclusions, situated between two elastic materials
(Fig. 3), was taken into account until meeting the following
eight boundary conditions:
1- of upper surface of rigid inclusions, for ¢ = z:

u, =0;u, =0;
2- of lower surface of rigid inclusions, for ¢ = -z

,=0;u,=0;

1Hr2
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” r“y(—AZAsin((l+ A)@)+B2icos((1+4)p)+C(1-4) :_’7'1 sin((1-1)p)- D(l—ﬁ)%cos((l—i)go)j.

tioned at the tip (Fig. 2).The authors have received a gen-
eral solution of the sharp corner problem in the form of
components of displacement and stress fields:

K—

3- along the interface, for ¢ = 0:
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Characteristic equation results from the following
formula:
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where " is denotes the ratio of shear modulus u4/u, while
kj=3 -4y - a plane strain. In consequence, the result of
Eq. (2) represents A exponent value.

The result shows that there is one singular term of
asymptotic solution for complex exponent, the real part A,
of which is always 0.5, and imaginary part ¢ depends on
the structure of material constants and can be determined
on basis of the below equation:
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Subsequent units are suitable: 1, 1.5 + ¢, 2, 2.5 + ¢.

Analytical formulas describing components of the
stress field and displacements around the tip of inclusion
Eq. (4) have also been obtained:
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The modified stress intensity factors are defined
as follows:
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Functions (materials constants and in polar coor-
dinates reference) f.,f.' and g',g"' are given in the

Appendix.
Relations between the classically defined stress
intensity factors K; and K;, and an adopted analytical de-

scription of the modified factors K/* and K/ can be
written as follows:

K" =K, cos| elog[2a] |- K, sin[clog[2a]], B
Kir =K, cos[ elog[2a]]+K, sin[ clog[2a]].
For sharp inclusions at the interface, classically

defined factors K; and K;; [9] can be calculated from the
following equation:
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4. FEM application results
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where a is half the length of inclusions, o, and o, are ap-  ponents oy and o
plied tensile load in the infinity (longitudinal - o, and 4520 1+
O = o, + Oy (8)
l- l-
where
Using the FEM (ANSYS), a bimaterial structure  « = #o (K3 +1) = 41 (x +1) B = #o (1 =1) 4 (15, =) is
1y (K +1)+ 14 (K, +1) 1y (K +1)+ 14 (K, +1)

was modeled with rigid inclusion in the interface line
(Fig. 4, a). Length of 2a inclusions is small in relation to
the height h and the width b of the disc (a =1, b =h =
= 20a), which corresponds to the issue of inclusions in the
"infinite" area. Shield described quadrangular, finite ele-
ments with increased density found in the tip area
(Fig. 4, b), with special triangular elements surrounding
singular point [18].
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Fig. 4a— FEM modeled fragment of structure, where
a=1,b=nh=20,b - of finite elements around tip of
inclusion

This inclusion has been modeled using a special
rigid beam of finite elements (ANSYS, element type:
MPC184). Because of symmetry, only half of the disc was
modeled. In order to ensure equality displacements at right
side of the disc, load value oy, [19] is dependent on com-

Dundurs’ [19] constants.
Numerical calculations were designed to deter-

mine the value of modified coefficients K, K/, to

compare theses to the exact solution (7), using Eqg. (6).

Typically, in order to determine the stress intensi-
ty factors (using the FEM) the following four methods are
used:

1. comparison of stresses or displacements resulting
from the FEM solution with a known analytical
solution [20];

2. determination of the value of integral J on basis of
the FEM [21];

3. designation of sought coefficients on basis of the
change in strain energy associated with growth of
virtual cracks [22];

4. use of special finite elements [23].

For aspects concerning this work not all the above
methods can be used (e.g., 3), and some have certain limi-
tations. At the same time, in case of the analytical solution

components of stress always depend on factors Kf’ and

Kﬁ' , thus when using method 2, there can only be deter-

mined the value of integral J, which is functionally related
to the sum of the squares of the sought coefficients. There-

fore it is impossible to calculate K/* and K/ values

separately. When using the FEM modeling commercial
software, it is not always simple to apply their own finite
elements, allowing direct determination of sought coeffi-
cients.

Knowing the analytical solution of stress distribu-
tion and displacements, it seems reasonable to use method

1 to determine coefficients K/ and K/ for work issues

analyzed in case of sharp inclusions. It is settled in approx-
imation. Values of the stress / displacement obtained from
the FEM solutions have approximated special functions
correlated to the analytical solution. In case of displace-
ments of the fields, the FEM and analytical solutions were
compared for two angles ¢ = 0 and #/2, and the stress



distribution for three ¢ = 0, #/2 and z. The best results
(presented hitherto in the work) based on the stress fields
for angle ¢ = 0 (¢ - polar angle in polar coordinates —
Fig. 1) have been obtained.

Disadvantage of this method, however, is the need
for providing high density mesh division into finite ele-
ments around the tip of stress concentrator. Additionally,

F =
Fu =
Values of modified stress intensity factors Kff

and coefficients of higher order terms Kf, for different

variants of the load are provided in Tables 1 and 2 and in
Figs. 5-8. In order to investigate the sensitivity of the
method chosen for variation of material constants, calcula-
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accuracy of the results is affected by the selection area
where the numerical solution is compared to the analytical
one. The drawback of this can eliminate by the use of
higher order terms Kf; in asymptotic expansion [24, 25].

For the issues analyzed three elements have been included.
Approximating functions used herein are as follows:

271 (cos[ elog[r]]a, (r,0)—sin[ clog[r]]z,, (r,0)) = K" + Kisr +Kfsr+...,
\/Z—W(sin[elog [r]]o-w(r,0)+cos[elog[r]]rm(r,o)) =K+ K r+Kinr+...

tions were performed for two-phase structures with differ-
ent proportions of the Young's modules 77, and Poisson's
ratios v,. The study was based on: E;= 10000000,
vy = 0.25.

Table 1
Values of coefficients Kf / a for tensile perpendicular to interface
vo=v,lv, | I,=E,1E K /a K" /a Error, % Kir/a K& /a Error, %
0 10 25.08 25.41 1.30 7.29 7.46 2.34
0.5 10 22.80 23.09 1.29 5.56 5.57 0.07
1 10 19.84 20.14 1.50 3.49 3.59 2.81
0 5 23.64 23.47 0.74 5.71 5.85 2.48
0.5 5 20.89 21.23 1.58 4.22 4.26 0.93
1 5 18.19 18.46 1.46 2.71 2.66 1.96
0 2 18.78 19.10 1.69 2.92 2.99 2.41
0.5 2 16.91 17.08 1.00 2.03 1.99 2.05
1 2 14.77 14.77 0.01 1.03 1.05 1.52
0 1 14.56 14.58 0.11 1.00 0.98 1.91
0.5 1 12.93 12.89 0.30 0.45 0.45 0.38
1 1 11.14 11.08 0.56 0.00 0.00 0
oy =100, 0,=0
* - strict solution obtained by substituting equations (7) to (6); error = K} /aij' la 100%
f"’
Table 2
Values of coefficients Kf"/a for simultaneous tensile perpendicular and parallel to interface
vo=v,lv, | Iy=E,1E K /a K" /a Error, % Kir/a Ko™ /a Error, %
0 10 17.42 17.79 2.04 5.11 5.22 2.17
0.5 10 15.70 16.17 2.89 3.79 3.90 2.79
1 10 13.86 14.10 1.73 2.57 2.51 2.37
0 5 16.18 16.43 1.52 3.99 4.10 2.74
0.5 5 14.57 14.86 1.95 2.91 2.98 2.40
1 5 12.78 12.92 1.14 1.85 1.86 0.46
0 2 13.14 13.37 1.74 2.11 2.10 0.78
0.5 2 11.80 11.96 1.35 1.38 1.39 1.01
1 2 10.32 10.34 0.21 0.74 0.73 1.00
0 1 10.14 10.20 0.58 0.67 0.69 1.78
0.5 1 9.04 9.02 0.15 0.32 0.31 1.23
1 1 7.80 7.75 0.58 0.00 0.00 0
oy =100, 0,=10
* - strict solution obtained by substituting equations (7) to (6); Error = w 100%
K /a
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Fig. 5 Constant K/ / a at second term: a - tensile transverse; b - tensile perpendicular and parallel to interface
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Fig. 6 Constant Kﬁfz / a at second term: a - tensile transverse; b - tensile perpendicular and parallel to interface
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Fig. 7 Constant K/ / aat third term: a - tensile transverse; b - tensile perpendicular and parallel to interface
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Fig. 8 Constant K, / aat third term: a - tensile transverse; b - tensile perpendicular and parallel to interface

When analyzing Figs. 5-8, it can be concluded
that for both load cases coefficients of higher order terms

Kz K;r, increase the diversity of materials, while
Kz K7, decrease.

5. Summary and conclusions

This paper presents the results of investigating a
flat element of two-phase structure with sharp linear inclu-
sion located at the interface.

Analytical description of fields of stresses and
displacements at the tip of a sharp rigid inclusion was
obtained as an asymptotic. It has been presented as a func-
tion of the modified stress intensity factors. Relationship
between the classically defined stress intensity factors K ,
Ky and modified coefficients K/, K’ has been defined.
Possibility of using different methods (e.g. the FEM) to
determine the modified coefficients has also been dis-
cussed.

On basis of this study, the following conclusions
can be drawn:

- exponent A takes complex values for the odd terms
of the asymptotic expansion and real for even;
- components of stresses and displacements, at the

same time, always depend on K/* and K;r and for
independently acting normal and tangential loads;

- calculated coefficients K/ and K/ comply with
the exact solution and are subject to error not great-
er than 3%;

- value ratios K/ and K;rare subject to increase
along with the diversity of material constants;

- for both the applied load cases, constant values
K/z K7, increase the diversity of materials, while
K/s Kr, decrease;

- the method used to determine value of the modified
stress intensity factors is not sensitive to material
parameters variation;

- use higher order terms increases accuracy of the re-
sults.
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DESCRIPTION OF STRESS FIELDS AND DISPLACEMENTS
AT THE TIP OF ARIGID, FLAT INCLUSION LOCATED AT
INTERFACE USING MODIFIED STRESS INTENSITY FAC-

TORS

Summary

This paper presents the results of investigating a
flat element of two-phase structure with sharp linear inclu-
sion located at the interface. Analytical description of
fields of stresses and displacements at the tip of a sharp
rigid inclusion was obtained as an asymptotic. It was pre-
sented as a function of modified stress intensity factors.
Relationship between the classically defined stress intensi-

ty factors K, , K;; and modified coefficients K’lr, K,’}r has
been defined. Possibility of using different methods (e.g.
the FEM) set on determining coefficients Kj’lr has been

discussed, and thus these values have been calculated nu-
merically and compared with the exact solution.

Keywords: fracture, bimaterial; rigid inclusion; singular
stress fields; stress intensity factors.
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Appendix
Stresses and displacements fields

0

frr =—Scos[ (g] cos[A+—]+4c cos[A+(p]sm <p]+2cos[4+37}c +e2“”(3cos[

3
;} + SCOS[A +5 2 +4ccos[4— 5 }sm[(p] K+

+e%"¢ (5005[41——]+3cos[A+£]4lfCOS[A+ (g}sln[w]}ci +e2 o) (COS[A—%]JrScos[AJr 2 +4¢cos[ A- :'Sln[(p 2cos[A—7¢}cj],

o =—55in[

}+4esm[A+%}sm sm[AJr } 25‘”(3sm[
@

—%}rSsin[AJrf}r%sm{A ﬂsm[qy]j +25|n[A+%} K+
2 2 2 2

2”[55m[ } 4fsm[A+2}sm ¢]+3S|nl:A+—DK ye2lmo), (sm[A—%}rSsmPH2}+4esm[ﬁ—%}sm[(p] Zsm[A—%ﬂxjj,

f) :—3005[ }+COS[A+3¢} 46COS‘:A+ }sm [0]- ZCOSI:A+3£j|Kj — 2e%% chos[A—g}Asin[A—f} sin[p]x; +
4 2 2 2 2
+2e%7 [chos[zn 2}+35|n[A+ZDSin[(p]Kj o2l [ cos{A—%}+SCos[4\+ 2} 46COSI:A—E}SII’1[¢)]+2COS‘:A—%pibl(j)



98
oo S} e i
BETRR I e R TS T I
i :Zsin[A +%}(COS[¢]7Zfsin[q)]) + er«’[ssin[A 3;’} + sm[AJr ‘ﬂ . 4fsin[A7%}sm[¢]]Kj .
e e Gt S gt it 3]

f,',; = —ZCOS|:A + %}(cos[(p] - 2¢sin[p])+ ZCOS|:A + 37(/’}]- +e2? [—3COS‘:A - 37(”} - COS‘:A + %} - 46COS|:A - g}sin[go]jxj +

+eznf[cos[A ﬂ+3cos[¢1+%} 46COS|:A+2}SII'][¢]jK +2e25(w)),(][,COS[A,Q(COS[(/,]JF2fsin[<p])+cos[4\—37qxj),

gr':25in[¢][(1+462)sin[A+ﬂ (4fcos[zl+2} 25|n[A+(gD ,]+
R ey
(—1—45 )COS[A——} (3+452)cos[a+37‘”}+

+2625¢(1+46 sm[;l— }Sln[(p]+465in|:ﬁ+37¢}+2[25iﬂ|:ﬁ—%i|(f—EZEWSin[w])+COS[A—%}(14-4825(065"1[{0]))1(]-
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+e i

g) :—Zcos[AJr%}sm —8¢2cos [ %}sin[(ph4cos{A+%}sin[¢]K +855|n[A+ }Sln[(p]x
—25C05[A+£}+

—ezs“’xj —3sin[4\ }+sm[4\+£}+4e(cos[4|——}+25cos[zl }sin[(p]J— Ky |+
2 Q27 3| _ o 3p ; ?
2€C0S —sin A—7 +5sin A+E

oo oGt
4GCOS[A+ 2} sm[A 2} 2e (l+4€ )cos A— ) sm[<p]+85 cos A+2 sin[p]+3sin| 4+ > +
» » . e
+2(( —1-¢? “’)cos[z}(chos[A] sm[A])+(—1+92 ‘”)(cos[A]JrZfsm[A])sm[Eij
a) =—gZ(r+0) sin[ﬁ—%ﬂ;«j —2e?7 cos[zﬂ- %}cj (sin[w] +4e%sin[p]+ 46005[(/)]Kj)><
x(—4fcos[4\+3—¢} (l+452)sin{A—£}+(3+452)sin[4|+3(/)} (4500{41 } Zsm —f )Kl]+
2 2 2 2
+e2 [4fcos[A—3—(p} (3+452)sin[A—3—¢}+(l+452)sin[A+g}+2[ chos[AJr } [AJrQDKj}—
2 2 2 2
9
2

,Kj[4cos[¢z]sin[4\+%}+e25(”*")[852c05[¢;]sin[A (ﬂ+sm[4\+ ﬂ+4cos[ ][ chos[A7%}+sin[Af

9 :2(l+45 )5'”[4” }5'“[‘/’] (COS[AH 2}( 2E(”””)(1+4f )+4cos[(p])+8fcos[go]sin[41+%DK1 +
+4e2(7+0) cos[ga](cos[A—g}rzfsm[A (S:DKJ -
—GZ”EK]-(QZEW(1+4€ )cos[ﬁ—%}rcos[A } 3cos[41+3—}+85 sm[A+ }sm[(p] 4fSin|:A+3£:|+2[COS|:A—£:|+265iﬂ|: —£:|JKJ-]+
2 2 2 2 2 2 2
+0%0 . (( —3-4e )cos[A 360} (l+46 )cos[zw } 455|n[4\—%}+2[cos[41+ }+2€SIH[A ﬂjDKj],
2 2 2 2 2

where A=clog[r].



