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bonded. The femoral head was modeled as a spherical sur-
face that was attached to the spherical acetabular micro-
cavity. The acetabular micro-cavity is located on the out-
side of the hip bone. This study aimed to investigate two 
case: the first is to take the presence of a micro-cavity in 
different positions within the cement layer. The stress con-
centrations are determined. The second case aimed to sim-
ulate the behavior of micro-crack emanating from the mi-
cro-cavity in the determined position and characterized by 
a high stress concentration gradient. The FEM was em-
ployed to identify the micro-crack behavior by studying 
various SIFs, that is, tensile, sliding, and tearing, which are 
denoted by KI , KII and KIII , respectively, at different 
heights during the main phases of the gait cycle. Semi-
elliptical micro-crack emanating from micro-cavity with 
0.2 mm of diameter is assumed to exist in the cement man-
tle. The dimensions of the micro-cracks are selected as 
follows: large half axis (length of the micro-crack) c = 
= 20.5 µm, small half axis (depth of the micro-crack) a = 
= 8.5 µm. 

 
 
 
 
 
 
 
 
 

a 

 
b 

Fig. 1 Schematic of: a - reconstructed acetabulum;  
b - micro-crack position 

 
The materials of cup, cement, bone layers and 

implant were defined as isotropic and linearly elastic. This 
is a reasonable assumption since the stresses are not 
enough high to create a plastic deformation of the polyeth-
ylene. Table 1 gives the elastic properties of the three ma-
terials: of prosthetic cup, cement, bone and implant [27, 
28]. 

 

Table 1 
Material properties 

 

Materials 
Young modulus E, 

MPa 
Poisson 
ratio ν 

Cortical bone 17000 0.30 
Spongious bone 70 0.20 
Cup (UHMWPE) 690 0.30 
Cement (PMMA) 2000 0.30 

Implant 210000 0.30 
 

2.2. Loading model 
 
 The loading conditions depend on the activity of 
the hip joints. In fact, the kinematics of hip joints is quite 

complicated and difficult to describe in a mathematical 
way. From gait analyses, it can be observed that the main 
activities of the foot are flexible and extendable in the 
walking direction, while other activities, such as abduc-
tion/adduction and femoral rotation, are negligible [29]. 
Consequently, we only need to simulate the activity of 
flexion and extension of the foot during the normal gait. 
For actual walking activities, each gait consists of two 
phases: standing and swing phases. Therefore, forces act-
ing on hip joints are varied in magnitude with time during 
the gait period and can be referred to a dynamic loading. 
Saikko [30] measured the load history for each gait cycle 
by a five station hip joint simulator and declared the max-
imum force is 3.5 kN and the swing angle is 23° in the 
forward and backward directions for flexion/extension 
actions for each gait [29, 31]. Wu et al. [32] have divided 
Saikko’s gait cycle into 16 load stages and the force acting 
on the hip joint for each stage may be obtained (Fig. 2).  
 

 
 
 
 
 
 

 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 

b 
Fig. 2 Loading conditions: a - loading and boundary condi-

tions; b - Forces acting on the hip joint in one gait 
cycle 

The direction of the force applied to the hip joint 
model depends on the swing direction of the femoral head. 
Fig. 3, shows the amplitude of these forces  applied to  the 
artificial hip joint. Thus, the loading pressure imposed on 
the model for each stage is calculated from the magnitude 
of the force obtained and the projected area of the outer 
surface   of  compact  bone  normal  to the  direction  of the 

 

 
 
 
 
 
 

 
 
 
 

Fig. 3 Load amplitude for 16 stages in on gait cycle 
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force. The magnitude of forces applied to the artificial hip 
joint in every stage of each gait cycle can thus lead to the 
real contact status. 
 

2.3. Finite element model  
 

 Computational methods such as finite element 
method are widely accepted in orthopedic biomechanics as 
an important tool used to design and analysis the mechani-
cal behavior of prosthesis [33]. Several authors used this 
method to analyze the mechanical behavior of hip prosthe-
sis. Contributing to this field, we analyzed the behavior of 
micro-cracks emanating from micro cavities in the cement 
layer, which fixes the acetabular cup to the contiguous bon, 
by calculating the stress intensity factor along the micro-
crack front. The acetabulum was modeled using finite ele-
ment code Abaqus [34]. Because of the interesting of the 
stress distribution around the micro cavities. A very high 
descritization were used with an advancing front meshing 
strategy to represent as possible the reality, and a focused 
mesh was used near a micro-crack tip. Two different cases 
were considered in the positioning of the micro-cavity and 
assessment of micro-crack behavior inside the cement lay-
er. The first case was to locate the position of the micro-
cavity in the cement layer to study the risky location in the 
cement with the highest stress concentrations. The second 
case was to examine the SIFs behaviors a along the micro-
crack front. The micro-cavity was placedin the middle of 
the cement layer. In addition, different contours were con-
sidered to derive the SIFs. 
 

 
a    b 

 
c 

 

Fig. 4 Three-dimensional finite element mesh model: a. of 
the reconstructed acetabulum; b. near the micro-
cavity and micro-crack tip; c. transverse section in 
the plane of the micro-crack 

The computed SIFs in the different contours were 
compared with one another to check the accuracy and con-
tour independency of the SIFs. The computed SIFs were 
determined to be close and independent of the selected 
contour. The stress intensity factor is computed using the 
modified micro-crack closure technique. The direct linear 
resolution was used to solve the stiffness matrix.  
 A 3D brick element with 8 nodes was used to 
mesh all models. The assembled model comprised 100528 
elements (Fig. 4). A special mesh refinement is used near 
the micro-crack front with an aim of increasing the preci-
sion of calculations. A convergence test was conducted to 
achieve mesh indecency and to ensure model accuracy. 

 
3. Analysis and results 

 

3.1. Analyses of stresses in the cement layer 
 

Before analyzing the stress intensity factor at the 
micro-crack tip, it was considered useful to determine the 
stress distribution around the micro-cavity in the cement 
layer without presence of micro-crack in order to analyze 
the nature of stresses in each position of cement and pre-
dict the micro-crack initiation location. 

 In this study two displacement of the micro-
cavity were considered in order to locate the zones of 
stress concentration which are usually the sources of mi-
cro-crack initiation. In the first the micro-cavity is dis-
placed in the angular direction from θ = 0 to 90° (Fig. 5). 
The second case concerns the radial displacement of the 
micro-cavity. 

 

Fig. 5 Micro-cavity positions 
 

3.1.1. Effect of angular displacement 
 
 Fig. 6 illustrate the distributions of the Von 
Misses equivalent stresses for different angular position of 
the micro-cavity (R = 28 mm). It can be seen that the stress 
distribution in the cement layer was not uniform around the 
micro-cavity. The extreme positions 0 and 90 ° generate 
almost the same distribution and the same level of stress. 
At these positions the maximum value of equivalent stress 
does not exceed 0.5 MPa. The Von Misses stresses in-
crease with angle θ, where they reach their maximum val-
ues (σeq max = 1.83MPa) at θ = 40 °. Indeed, this position of 
the micro-cavity coincides with the femoral stem axis 
where the loading is applied. From θ = 40°, the intensity of  
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Fig. 6 Distributions of the Von Misses equivalent stresses 
in the cement mantle around micro- cavity for dif-
ferent angular position 

 
equivalent stress decrease and reach their minimum value 
at 90°. It is also noted that the cement for different posi-
tions is subjected to tensile stress, this shows that the pres-
ence of micro-cavity in different regions can leads the frac-
ture of the cement. Knowing that cement, in general do not 
resist to tensile loading well (tensile strength = 25 MPa, 
compressive strength = 80 MPa and the shearing strength  
= 40 MPa). 

Fig. 7 illustrates the variations of maximum equi-
valent stress as a function of the position of the micro-ca-
vity in cement layer. It can be noted that the position θ = 0, 
instead of negligible stresses, the cement is completely 
relaxed. These stresses increase in intensity and reach their 
values maximum at θ = 40°. By symmetry these stresses 
decrease and reach their minimum values for θ = 90°. 
However, the stresses are extremely low they do not con-
stitute an immediate risk of damage of the cement. But at 
the long term, these constraints can lead to failure of the 
cement. The cement around the micro-cavity is subjected 
to raise tensile loading. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 σeq max in the different position of the micro- cavity 
 

This can constitute a major risk for the micro-
crack initiation emanating from the micro-cavity, given 
that cement does not resist to the traction loading well. 
 

3.1.2. Effect of radial displacement  
 

 This effect is shown in Fig. 8. This one presents 
the contour of the equivalent Von Misses stresses around 

the micro-cavity moved along the radius R at position θ = 
40°. This displacement is performed in the vicinity to the 
cement /cortical bone interface. 

The radial displacement results an almost uniform 
distribution of stresses with the highest values is located in 
close vicinity of interface cup / cement. This can be mainly 
due to interaction effect between micro-cavity and cup 
with high mechanical properties. These stresses decrease 
intensity in the cement layer, where they reach their mini-
mum value in the vicinity of the cement/cortical bone in-
terface because to low mechanical properties of the bone. 
 

Fig. 8 Equivalent Von Misses stresses around micro-cavity 
for different radius R 

 
 The maximum stress at the interface cup-cement 
exceeds that at the bone-cement interface about 23% . The 
difference observed between maximum stresses, far and 
near vicinity of the interface, may be due to the interaction 
effect of stress field around the micro-cavity and interface. 
 The difference between the mechanical properties 
of assembled materials, characterized by the mechanical 
properties, determines the process of interaction effect. 
Bouziane et al. [22] examined the behavior of micro-cavity 
located in the cement of a model of the hip prosthesis sim-
plified three -dimensional. They show that when the micro-
cavity is located at the proximal part presents the most 
important risk of the rupture of the cement mantle; the in-
teraction between the edge effect the femoral stem and the 
micro-cavity is responsible for this behavior. 
 Fig. 9 illustrates the variations of maximum 
equivalent stress as a function of the radial displacement of 
the micro-cavity in cement layer. The obtained results 
shown in this figure confirm those illustrated in Fig. 8. It 
can be noted that the presence of the micro-cavity has an 
effect on the change in the stress field at the two interfaces. 
Indeed, the maximal stress is obtained when the micro-
cavity is located at the vicinity of cup/cement. Far from 
this interface, the maximum stress decreases progressively 
to reach its minimum value in the vicinity of second inter-
face. Whatever the radial position of the micro-cavity, the 
cement is subjected to tensile stress. This can constitute a 
major risk of failure of cement or initiation of micro-crack. 
 Fig. 10 show the distribution of radial and angular 
stress around the micro-cavity, in the vicinity of the inter-
face  cup-cement  and  for θ = 40°.  Regardless of the posi- 

0 10 20 30 40 50 60 70 80 90

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

σ
e
q
 m

a
x
 (

M
P

a
)

θ (°)



 531 

 
 
 
 

 
 

 

 

Fig. 9 σeq max for different position R in cement 

tion, the cement is completely compressed along both ra-
dial and angular directions.  
 The angular and radial stresses are highly local-
ized in the central and extreme positions around the micro- 
cavity. It can be seen that the intensity of the radial stresses 
σr in different positions of the layer cement is higher than 
that angular stress σθ but their distributions are almost 
similar. By the low mechanical properties (compressive 
strength 80 MPa), the stress obtained around the micro- 
cavity do not present a risk of damage to the cement. 
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Fig. 10 Distribution of radial and angular stress around the 
micro-cavity, in the vicinity of the interface cup –
cement 

 

3.2. SIF for micro-crack emanating from micro-cavity 
 

The SIFs behaviors along the micro-crack front 
were examined with respect to the gait cycle phases at dif-
ferent locations to study the micro-crack behavior in the 
cement layer. The micro-cavity is located at position R = 
27.2 mm and θ = 40°. The SIFs were plotted versus the 
micro-crack front length in the different phases of the gait 
cycle. Figs. 11, 12, 13 represent the variation of stress in-
tensity factors (KI , KII and KIII) of micro-crack emanating 
from micro- cavity for a gait cycle. 

In mode I (Fig. 11), we note that the loading di-
rection - 12° leads to a stress intensity factor more impor-
tant than for other orientations. On the other hand, what-
ever the loading orientation, the stress intensity factor in-
creases along the micro-crack front and reaches its maxi-
mum value at its tip (position 1). This behavior is more 
marked in mode I. 

 
 
 

 
  
 
 
 
 

Fig. 11 Variation of KI along de micro-crack front 
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Fig. 12 Variation of KII along de micro-crack front 
 
The stress intensity factor in mode II (Fig. 12) 

varies weakly along the front; it reaches its maximum 
value at position 0 and then decreases to grow at the sec-
ond tip (position 1). We note that regardless of the loading 
direction, the micro-crack propagation in mode II is stable 
and is characterized by a stress intensity factor almost null 
along the micro-crack front. In mode III (Fig. 13), the mi-
cro-crack does not present a risk of propagation because of 
the weak values of KIII along the micro-crack front. 
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Fig. 13 Variation of KIII along de micro-crack front 
 

 Our results show that the most intense variations 
of the stress intensity factor are obtained in mode I 
(Fig. 14) for loading oriented at -12°. This orientation cor-
responds to the maximum load, reached during the gait 
cycle. In this case, the cement has a high risk of micro-
crack propagation in mode I compared to other failure 
modes II and III. 
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Fig. 14 Comparison of SIFs in mode I, II and III 
 

4. Conclusion  

 

 This study was undertaken with an aim of analyz-
ing the behavior of a micro-crack emanating from the mi-
cro cavity located in cement of reconstructed acetabulum 
by the calculation of the stress intensity factors along the 
micro-crack front under a gait cycle. The obtained results 
allow us to deduce the following conclusions: 

1. The distribution of the stress around the mi-
cro-cavity in the cement layer is not homogeneous. The 
Von Misses stresses increase with angle θ, where they 
reach their maximum values at θ = 40°. From this orienta-
tion the intensity of equivalent stress decreases and reaches 
their minimum value at 90 °. The cement around the mi-
cro-cavity is subjected to tensile loading. This can consti-
tute a major risk for the micro-crack initiation emanating 
from the micro-cavity. 

2. The extreme positions 0 and 90° generate al-
most the same distribution and the same level of stress. In 
his positions the cement is completely relaxed; the stresses 
are extremely low they do not constitute an immediate risk 
of damage of the cement.  

3. The radial displacement results an almost uni-
form distribution of stresses with the highest values is lo-
cated in close vicinity of interface cup / cement. These 
stresses reach their minimum value in the vicinity of the 
cement / cortical bone interface. 

4. The intensity of the radial stresses in different 
positions of the layer cement is higher than that angular 
stress. The radial and angular stress obtained around the 
micro-cavity does not present a risk of damage to the ce-
ment. 

5. The presence of the micro-cavity has an effect 
on the variation of the stress intensity factor. The SIFs in 
mode I, II and III depends on the positions of the micro-
crack around the micro-cavity in the cement and the gait 
cycle. The stress intensity factor in mode I increase along 
the micro-crack front and reach its maximum value at posi-
tion 1. The stress intensity factor in mode II varies weakly 
along the front and the micro-crack propagation in this 
mode is stable. In mode III, the micro-crack does not pre-
sent a risk of propagation because of the weak values of 
KIII along the micro-crack front. 

6. The most important variations of the stress in-
tensity factor are obtained in mode I for loading oriented -

12°. This orientation corresponds to the maximum load, 
reached during the gait cycle. In this case, the cement has a 
high risk of micro-crack propagation in mode I compared 
to other failure modes II and III. 
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N. Bounoua, A. Belarbi, M. Belhouari,  
B. Bachir Bouiadjra 

MIKROPLYŠIO ATSIRANDANČIO DĖL 
MIKROTUŠTUMŲ REKONSTRUOTOS GŪŽDUOBĖS 
CEMENTE ĮTEMPIŲ INTENSYVUMO 
KOEFICIANTAI 

R e z i u m ė 

Cementas yra pagrindinis elementas apsaugantis kaulo 
taurę. Jo pagrindinis vaidmuo užtikrinti gerą sukibimą ir apkro-
vos perdavimą kaului. Cemento mechaninės savybės yra labai 
menkos. Veikiant mechaninei apkrovai cementas privalo prieši-
ntis mikroplyšio atsiradimui ir sklidimui, kuris iššaukia protezo 
ardymą ir, dėl šios priežasties, protezo atplėšimą. Šioje studijoje 
naudojamas 3D baigtinių elementų metodas įtempių pasiskirsty-
mo apie rekonstruotos gūžaduobės mikrotuštumas cemente ana-
lizei. Išryškinta mikrodefekto padėties įtaka įtempių pasiskirsty-
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mui. Taip pat analizuojamas mikroplyšio sklidimas iš mikrotuš-
tumos skaičiuojant įtempių intensyvumo koeficientą mikroplyšio 
viršūnėje žmogui žingsniuojant. 

 
 

N. Bounoua, A. Belarbi, M. Belhouari,  
B. Bachir Bouiadjra 
 
STRESS INTENSITY FACTORS FOR MICRO-CRACK 
EMANATING FROM MICRO-CAVITY IN CEMENT 
OF RECONSTRUCTED ACETABULUM  

S u m m a r y 

Cement is an essential element for securing the 
cup to the bone. Its main role is to ensure good adhesion 
and to ensure the load transfer to the bone. The mechanical 
properties of cement are very low. Under the effect of the 

mechanical lading, cement must be able to resist the initia-
tion and propagation of micro-crack being able to lead to 
its ruin and consequently the unsealing of the prosthesis. In 
this study, the three-dimensional finite element method is 
used to analyze the stress distribution around micro cavi-
ties in the cement of reconstructed acetabulum. The effect 
of the position of the micro defect on the stress distribution 
is also highlighted. On the other hand to analyze the behav-
ior of micro-crack emanating from micro-cavity by com-
puting the stress intensity factor at the micro-crack tip un-
der a gait cycle. 
 
Keywords: Cement; Micro-cavity; Micro-crack; Stress 
intensity factors; Finite element method. 
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