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1. Introduction 

Circular disks are widely used in contemporary 

machines. The disk strength issues are very urgent, and 

undoubtedly the interest to these issues will grow in con-

nection with the existing tendency of development of engi-

neering and energetics. At the design stage of a disk it is 

necessary to take into account that there may happen crack 

initiation in the disk, to perform limit analysis of the disk 

to establish that the adversely located would-be initial 

cracks will not grow to critical sizes and will not cause 

fracture in the course of the estimated lifetime. The size of 

the initial minimal crack should be considered as a design 

characteristics of the disk material. Extensive references 

have been devoted to strength analysis of disks [1, 2]. In a 

great majority of the existing papers A. Griffits’s model of 

a crack is used. In the present paper we use a model of a 

bridged crack [3-5].  

 

2. Problem statement 

 

We consider a plane problem of fracture mechan-

ics for a circular disk weakened by bridged cracks. We 

study a quasistatic deformation process of a disk whose 

cross section in the plane iyx   occupies a circle of radius 

R (Fig.1). A model of a bridged crack is used. This model 

of a crack has got the experimental confirmation [3, 6-8].  

 

Fig. 1 Computatinal diagram of fracture mechanics prob-

lem for circular disk 

 Let us consider a fracture mechanics problem for 

a circular disk when the mixed boundary conditions are 

given on the contour of the disk. Refer the cross section of 

the disk to polar system of coordinates r  having chosen 

the origin of coordinates at the center of the circle L of 

radius R. 

 Let only normal displacements  ru  and tangen-

tial components of the surface force  N  be given on the 

contour of the disk. The disk has N rectilinear cracks of 

length kl02  N,...,,k 21 . Locate at the center of the crack 

the origin of local system of coordinates kkk yOx  whose 

axes kx  coincide with the lines of the cracks and form the 

angles k  with the axis x (Fig. 1).  

We consider a crack model with cohesive forces 

(bonds) continuously distributed in narrow end zones of 

the cracks and having the given deformation diagram. The 

cohesive forces (bonds) will be concentrated in the narrow 

domains kD , the sizes of these domains are unknown be-

forehand and should be defined from the problem solution.  

 It is accepted that the fracture process for each 

crack is localized at the end zone that is considered as a 

part of the crack and may be compared with the crack size. 

In the studied case, the fracture process zone may be con-

sidered as some layer (end zone) adjacent to the crack and 

containing a material with partially disturbed bonds be-

tween its separate structural elements. When the disk is 

loaded, in the bonds of cracks at the end zones there will 

arise normal  ky xq
k

 and tangential  kyx xq
kk

 forces 

 N,...,,k 21 . The quantity stresses and sizes kd1  and 

kd2  of these end zones are unknown beforehand and 

should be determined.  

As the end zones are small compared with the re-

maining part of the disk, they can be removed mentally 

having changed by the sections that interact by some low 

corresponding to the action of the removed material. Thus, 

to the crack faces at the end zones will apply the normal 

and tangential stresses numerically equal to  ky xq
k

 and 

 kyx xq
kk

  N,...,,k 21 , respectively.  

Denote by 



N

k
kLL

1

 the set of free faces of the 

cracks, and by 



N

k
kLL

1

 the set of prefracture end zones 

at which the faces interact with bonds. The boundary con-

ditions of the problem on the faces of cracks with end 

zones have the form:    
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 The main relations of the problem should be 

complemented with the equations connecting the opening 

of the end zones faces and forces in the bonds. Without 

loss of generality these equations are represented in the 

form [4]. 
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The functions  kkx   represents effective 

compliances of bonds dependent on tensions; k  are the 

stress vector module in the bonds;    kk vv  is a normal, 

   kk uu  is a tangential component of the opening of the 

end zone faces of the k-th crack.  

We denote the domain under consideration en-

closed between the circle L of radius R and the system of 

sections  kkk l,lL    N,...,,k 21  by S , the domain 

supplemented to the complete complex plane by  .S   

 The problem is reduced to determination of two 

complex variable functions  z  and  z  analytic in the 

domain S  and satisfying the boundary conditions [9]: 
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where  iRe ; kx are the affixes of the points of faces of 

the k-th crack with end zones; κ is the Muskhelishvili con-

stant;   is the shear modulus of the disk material. 

 On the circle L in the general case we take the 

functions  ru  and  N  in the form of the Fourier se-

ries 
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where V , T ( ,...,, 210  ) are, generally speaking, the 

known complex coefficients. 

 

3. Method of the boundary-value problem solution 

  

Passing in relations (3) and (4) to conjugate val-

ues, after some transformations on the contour L we get the 

following relation  
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 Introduce on L a new auxiliary function   Ht   

(the Holder condition) in the form  
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 Summing up (6) and (7), we find  
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 Now, having substituted (8) in (7), we get  
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 Based on the theory on analytic continuation and 

the property of the Cauchy-type integral, from relations (8) 

and (9) allowing for expansions of the functions  tur  and 

 tiN  we have  
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In relations (10)-(11) the functions  z*  and  

 z*  аre analytic in the complete complex plane cut 

along the sections  kkk l,lL    N,...,,k 21  and vanish 

at infinity, i.e.   0* ,   0* .  

We will look for the auxiliary unknown function 

  Ht   on L in the form 
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where 

v  ( ,...,, 210  ) are the unknown complex co-

efficients. 

Substituting relation (12) to the first formulas (10) 

and (11) and using the Cauchy integral theorem, we get 

general formulas for the desired functions: 
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We will look for the functions  z*  and  z*  in the 

form [10] 
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The boundary conditions on the sections 0ky , 

kkk x     N...,,,k 21  are used to find the un-

known functions )( kk xg .  

In what follows, we will refer all linear sizes to 

the radius R. 

Satisfying boundary conditions (5) by the func-

tions (13)-(14) on the faces of cracks with end zones, we 

get a system of singular integral equations with respect to 

the unknown functions  kk xg   N,...,,k 21 .  

To the system of singular integral equations for 

the internal cracks with end zones we should add addition-

al conditions following from the physical sense of the 

problem  
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For converting the system of integral equations to 

an algebraic system, at first by means of change of varia-

bles in the system and in conditions (15) we reduce all the 

integration integrals to one interval [-1;1]. Using the pro-
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If in (16) we pass to conjugate values, we get one 

more MN   algebraic equations. After some transfor-

mations we represent relation (2) in the form  
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 N,...,,k 21 ,                                        

where   



 kk

k
k vv

x
v0 ;   




 kk

k
k uu

x
u0 . 

The right hand sides of the system (16) contain 

unknown values of stresses  k,my tq
k

 and  k,myx tq
kk

 at the 

nodal points k,mt  (m=1,2,…, k,M1 ; k=1,2,…,N), for con-

structing the missing equations we require that the condi-

tions (17) at the nodal points k,mt , contained at the prefrac-

ture end zones be fulfilled.  

As a result, we get one more N2  system from 

k,M1  equations to equations for determining approximate 

values of  k,my tq
k

 and  k,myx tq
kk

 (k=1,2,…,N; 

m=1,2,…, k,M1 ): 
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where 
M

l
D k





2

1
 , N,...,,k 21 . 

The obtained systems (16), (18), (19) turned to be 

associated and should be solved jointly. As the stresses in 

the disk are restricted, the solutions of integral equations 

are sought in the class of everywhere bounded functions.  

Such a solution exists subject to solvability conditions of 

integral equations.  

For the closeness of the obtained algebraic equa-

tions, we miss N2  equations expressing the solvability 

conditions of integral equations (stress finiteness condi-

tions in the vicinity of the tips of the cracks with end 

zones). Writing these conditions, we get one more N2  

complex equations    
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)21( N,...,,n  . 

The obtained relations (16), (18), (19), (20) permit 

to get the terminal solution of the problem if the coeffi-

cients 

k   ...,,k 10   are determined. For composing an 

infinite system of linear algebraic equations with respect to 

the unknowns 

k , subject to (14) we substitute (13) in 

condition (7). After some transformations, condition (7) is 

reduced to the form  
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Because of some awkwardness of the expressions 

for mA , 

mA , mU , 

mU   ,...,,m 210 , they are not cited.  

Comparing in the both sides of the obtained rela-

tion (21) the coefficient, with the identical powers R  

and R , we find two infinite systems of linear algebraic 

equations: 
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     (22) 

The joint solution of the obtained equations per-

mits under the given characteristics of bonds to determine 

the forces in bonds, the sizes of the end zones and also the 

stress-strain state of the disk in the presence of arbitrary 

number of cracks with end zones.  

For formulation of the limit equilibrium criterion 

we use the criterion of critical opening of the crack surfac-

es. We can determine the opening of the crack faces within 

the end zones by the relations  
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_

kkk xq,x,xv,xv
k

 00    on kL  , 

       kyxkkk

_

kkk xq,x,xu,xu
kk

 00  

N,...,,k 21 . 

The condition of critical opening of the crack faces at the 

edge of the end zone will be  
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    (23) 

where c  is the fracture toughness of the disk material to 

be determined experimentally.  

 

4. Method of numerical solution and analysis 
 

For numerical realization of the obtained solution 

it is necessary the joint solution of equations (16), (18), 

(19), (20), (22) and (23). Because of unknown sizes of the 

prefracture end zones even at linearly elastic bonds the 

systems of algebraic equations became nonlinear. In this 

connection, for solving the obtained systems in the case of 

linear bonds, the successive approximations method was 

used.  
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We solve the combined system for some certain 

values of 

kl   N,...,,k 21  with respect to the unknowns 



k ,  mk tg 0 ,  k,mky tq  and  k,myx tq
kk

. The values of 

kl  

and the found quantities 

k ,  mk tg 0 ,  k,mky tq  and 

 k,myx tq
kk

 are substituted in (20), i.e. into the unused 

equations of the combined system. The taken values of the 

parameters 

kl  and the corresponding values of 

k , 

 mk tg 0 ,  k,mky tq ,  k,myx tq
kk

 will not, generally speaking, 

satisfy the equations (20). Therefore, by choosing the val-

ues of the parameters 

kl  we will repeat the calculations 

over and over again until equations (20) of the combined 

system will be satisfied with the given accuracy. The com-

bined system of equations at each approximation was 

solved by the Gauss method with the choice of the princi-

pal element for various values of M.  

In the case of nonlinear law of deformation of 

bonds, for finding the forces at the end zones, an algorithm 

similar to the A.A. Il’yushin method of elastic solutions 

[13] was used. The effective compliance calculation is 

conducted as in definition of the secant modulus in the 

method of variable elasticity parameters. The successive 

approximations process ends as soon as the forces along 

the end zone, obtained at two successive iterations differ 

little from each other.  

The nonlinear part of the curve of deformation of 

bonds was taken in the form of bilinear dependence whose 

ascending part corresponded to elastic deformation of 

bonds   VxV k <<0  with maximum tension of bonds. 

Here        kkkkk vviuuxV . For  kxV > V  the 

law of deformation was described by a nonlinear depend-

ence determined by the two points   ,V  and  cc , , 

moreover for  c  we have an ascending linear de-

pendence (linear hardening corresponding to elasto-plastic 

deformation of bonds). 

The graphs of dependence of dimensionless 

length of the end zone for the left end of the crack from the 

dimensionless parameter 0N  for the following values 

of free values of free parameters 05001 .Rl  ; 100. ;  

41   ; 180

1 10 iRe.z  ; 0N  is a force factor, are de-

picted in Fig. 2.  

The graphs of distribution of normal forces 

01
Nqy  in the bonds for the right crack tip zone (curve 1 

for linear deformations of bonds, curve 2 for a bilinear 

curve of deformation of bonds) are given in Fig. 3.   

The calculations show that at linear law of defor-

mation of bonds, the forces in bonds have always maxi-

mum values at the edge of the end zone. The similar pic-

ture is observed for the values of opening of the crack fac-

es as well. Therewith, with increase of relative compliance 

and for the values of opening of the crack faces. There-

with, the opening of the crack increases according to in-

crease of relative compliance of bonds. 

 

 

Fig. 2 Dependence of dimensionless length of the end zone 

for the left end of the crack from the dimensionless 

parameter 0N  

 

Fig. 3 Distribution of normal forces 01
Nqy  in the bonds 

for the right crack tip zone 

 

5. Conclusions 

 

The obtained closed algebraic system of equations 

and limit condition of the crack growth permits by means 

of numerical calculation and for each specific circular disk 

to set up admissible size of cracks for different laws of 

deformation of interparticle bonds, elastic and geometrical 

characteristics of the material and disk. The developed 

calculation method permits to solve the following practi-

cally important problems:  

1) to estimate the guaranteed life of a circular disk 

with regard to expected defects and loading conditions; 

2) to set up admissible level of defects and maxi-

mum value of workloads providing sufficient safety mar-

gin; 

3) to conduct the choice of a disk material with a 

complex characteristics of fracture toughness. 
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V.M. Mirsalimov, N.M. Kalantarly 

INTERACTION OF BRIDGED CRACKS IN A CIRCU-

LAR DISK WITH MIXED BOUNDARY CONDITIONS 

S u m m a r y 

Interaction of arbitrarily located system of recti-

linear bridged cracks is considered. It is assumed that the 

mixed boundary conditions are given on the boundary of 

the circular disk. It is accepted that the fracture zone is a 

finite length layer containing a material with partially dis-

turbed bonds between its separate structural elements (end 

zone). Existence of bonds between the cracks surfaces in 

the end zones is simulated by application of cohesive forc-

es caused by the presence of bonds to the crack surfaces. 

Limit equilibrium analysis of cracks is formulated, taking 

account the criterion of the limit traction of the bonds in 

the material at the edge of the cracks end zone.  

  

Keywords: circular disk, mixed boundary conditions, in-

teraction of the system of cracks, cracks with interfacial 

bonds, cohesive forces. 
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