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1. Introduction 

 

In the modern civil engineering structures, such as 

buildings, steel framed structures and bridges, use of coat-

ed laminated composite beams has increased rapidly in 

recent years. Many studies exist on the dynamic behavior 

of isotropic beams using the analytical, experimental and 

numerical methods (Biggs, [1]; Clough [2]; Khadri et al., 

[3, 4]). However, the number of studies related to the free 

vibration of beams with composite coats is relatively less. 

Hamada et al. [5] studied the variations in the natural fre-

quencies and damping properties of laminated composite 

coated beams utilizing a numerical technique to compute 

the Eigen parameters of coated laminated composite beams 

(sandwich structures). Kiral et al. [6] studied the dynamic 

behavior composite beam subjected to vertical moving 

force using the commercial finite element. Using analytical 

technique, Zibdeh et al. [7] studied the vibration of a simp-

ly-supported laminated composite coated beam traversed 

by a random moving load. Tekili et al., [8] utilised the ana-

lytical analysis of free vibration of simply-supported lami-

nated composite coated beams. Kadivar et al., [9] the one 

dimensional finite elements based on classical lamination 

theory, first-order shear deformation theory, and higher-

order shear deformation theory are developed to study the 

dynamic response of an unsymmetric composite laminated 

orthotropic beam. Mohebpour et al., [10] presented the free 

vibration and moving oscillator problems analysis of iso-

tropic and composite laminated beams are presented using 

the finite element method. There are numerous publica-

tions on composite structures which employed the experi-

mental method. In this study, the free vibration of strength-

ened beams by composite coats has been investigated by 

use of finite element method (FEM). For this purpose, a 

computer code is developed using MATLAB to perform 

the finite element vibration analysis. The parametric analy-

sis is conducted to study the effects of the variation of dif-

ferent parameters such as the thickness of faces, core 

thickness and the fiber orientation, and type of core iso-

tropic material (steel and foam) on natural frequencies of 

the beam are examined with different boundary conditions 

imposed on the beam. The beam frequencies extracted in 

this regard will be compared with those obtained analyti-

cally.  

 

2. Theoretical formulation 

 

A laminated composite coated beam with its 

physical dimensions shown in Fig. 1. The core is made 

from an isotropic material (steel and foam), where L, b, 

and 2H are the length, the width and thickness of the beam, 

respectively. The top and bottom lamina are made from 

composite material (glass/epoxy) with the thickness (H – 

h) as shown in Fig. 1. 

 

 

Fig. 1 Geometry of a laminated composite coated beam 

In the case of pure bending of a symmetric lami-

nate beam, the constitutive equation to the momentum 

equation [11]: 
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where Mx, My, and Mxy are the bending and twisting mo-

ments, and κx, κy, and κxy are the curvatures of plate, 

whichare defined by 
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with x  and y  are rotations and the stiffness parameters 

is: 
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where 
'

ijQ is the reduced stiffness constant of a unidirec-

tional. The beam theory makes the assumption that in the 

case of bending along x-direction, the bending and twisting 

moments My and Mxy are zero. Eq. (1) thus lead to: 
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where w is displacement and the stiffness parameter is: 
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The reduced stiffness constant of a unidirectional 

layer, off its material directions is obtained by: 
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11 11 22 12 662( )'Q = Q cos θ+Q sin θ+ Q +Q sin θ cos θ ,  (6) 

where θ is the angle between the principal laminate’s di-

rection and the axis of the beam. The elastic constants Qij 

in the principal material coordinate system are expressed 

as follows: 
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where 11E , 22E , 12G  and 12υ  are the engineering parame-

ters of the kth lamina. The equivalent mass per unit length 

of the laminated composite beam is expressed as: 

    1
1

2
n

s k k k c f
k=

ρ = b ρ z z = b ρ h+ ρ H h  ,  (8) 

where ρc and ρf are the densities of the core and faces of 

the beam, respectively. Lastly, the beam theory makes the 

additional assumption that the deflection is a function of x 

only: w = w
 
(x, t). So, the mode shape of beam only de-

pends on the coordinate x. In the framework of the beam 

theory, in this case the fundamental equations of laminates 

are simplified as:  
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where q is pressure load applied to the beam. For free vi-

bration analysis (q = 0), the relevant equation can be writ-

ten as: 
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It may be noted here that for uniform composite 

beam and for each uniform segment of an externally ta-

pered composite beam, bD11 is constant. 

 

3. Finite element formulation 

 

The approach of separation of variables is being 

applied for w
 
(x, t), and it can be expressed as the product 

of two functions one in displacement ’x’ and the other in 

time ’t’ as 

     
1

,
n

j j
j=

w x t = N x u t , (11) 

where w
 
(x, t)represents the solution of the governing dif-

ferential equation in hand. The displacement components 

of a beam element shown in Fig. 2 can be expressed in the 

form:  

    1 2 3 4, ,
e

i i j jw x t = N v +N +N v +N   (12) 

where {u} = {vi φi  vj φj}
T
 is the nodal displacement vector 

for the element with v and φ are in transverse displacement 

and slope at the nodal.  

 

Fig. 2 Beam element 
 

The Ni (i = 1, 4) are shape functions of the beam 

element which can be obtained as follows [2]:  
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where l is the beam element and x is the local coordinate of 

the beam element. In the finite element formulation an 

integral statement is to be established to develop algebraic 

relations. The Galerkin method leads to the following 

equation: 
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Substituting Eq. (11) into Eq. (14), then: 
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Integration by parts the weighted integral state-

ment twice, one can get the following equation: 
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Then, the element stiffness k
(e)

 and element mass 

matrices m
(e)

 are given by: 
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The overall mass and stiffness matrices are ob-

tained by assembling the element matrices: 
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where n is the total number of discretized elements. The 
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equation of the undamped free vibration of beams with 

composite coats may be expressed as: 

2
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u
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t


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  (21) 

If the system is vibrating in a normal mode, we 

obtain an eigenvalue problem as: 

 2 0,jK ω M =   (22) 

where ωj is the j-th natural frequency and   is the corre-

sponding modal displacements. The Eq. (22) has a solution 

if and only if its determinant is zero, ie: 

 2 0jdet K ω M = .   (23) 

The roots of the Eq. (23) are the characteristic 

values, which are equal to the squares of the natural fre-

quencies. 

 

4. Numerical results 

 

A computer code is developed using the 

MATLAB in order to calculate the natural frequencies and 

the modes of natural vibrations of an undamped beam with 

composite coats. The material geometrical properties and 

physical dimensions of the beam are the same as [7]. The 

beam has length, L = 500 mm, width b = 25 mm, thickness 

H = 4 mm. Table 1 shows material properties for the face 

and core of the beam models used in the study. The mate-

rial of the core is the steel and the foam (Divinycell H200) 

for model I and II respectively. The faces are made from 

glass/epoxy composite material for the two models. 

Table 1 

Material properties for the face and core of the beam models 

Model Layer Material ρ, kg/m
3
 E11,GPa E22, GPa G12, GPa υ12 

I 

II 

Core I 

Core II 

Steel 

Foam 

7850 

200 

200 

0.277 

200 

0.277 

77 

0.11 

0.3 

0.33 

 Face Glass/Epoxy 1759 38.6 8.27 4.14 0.26 

 

For validation tests, the natural frequencies calcu-

lated by analytical and numerical method for simply sup-

ported sandwich beam.The natural frequencies of the simp-

ly supported of a sandwich beam are expressed analytically 

by [8, 11]: 

1

11

2

22 1
DρL

πj
=ω

s

j .  (24) 

In the first validation test, the beam is viewed 

with h
 
/
 
H = 0 and θ = 0° and for ten first modes. From 

Fig. 3 one observes that the natural frequencies computed 

by the finite element method agrees generally well with the 

analytical one (Eq. (24)) with the considerable deviation 

for number of finite element ne = 10 and with the slight 

deviation for ne = 50.  

 

Fig. 3 Comparison between the FE results and the analyti-

cal solution for the first ten modes 
 

For second verification (Fig. 4), the model I is 

considerate with h
 
/
 
H varies from 0 to 1, with θ = 0° and 

for mode 1. However, the good agreement was carried out 

for ne = 100. It can be also verified that when the number 

of elements increases, the numerical results converge to the 

exact solutions. Thus, the number of the finite elements 

used in vibration analysis is ne = 100.  
 

 

Fig. 4 Comparison between the FE results and the analyti-

cal solution for a first mode and with different 

thickness ratios 
 

The natural frequencies corresponding to mode 1, 

5 and 10 are plotted in Figs. 5, a and 5, b, for case of the 

simply supported laminated composite coated beam and 

for two models with θ = 0°. As, can be seen from of these 

figures that the natural frequencies are affected by the 

thickness ratio for high modes. However for mode 1, the 

curve of the frequency is almost horizontal, it remains 

nearly independent of the thickness ratio, relatively com-

pared to the higher modes. According to Fig. 5, a, we note 

that the natural frequencies of the full steel beam are al-

most identical to those of the full composite beam and this 

is for frequencies bases, however for the high frequencies, 

a small difference is found. While, a large difference is 

found between the natural frequencies of the full steel 
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beam and the full foam beam (Fig. 5, b) and this is due to 

differences in stiffness of the two materials. 
 

 

a 

 

b 

Fig. 5 Natural frequency of sandwich beam with different 

mode: a - Model I; b - Model II 
 

For the following analysis, we assumed that the 

fiber angle of the composite layer vary of the 0° to 90° 

with an increment of 30°. The Figs. 6, a and 6, b shows the 

variation of the first natural frequency of the sandwich 

beam versus the thickness ratio, with various fiber orienta-

tions. A linear relation is observed between frequency and 

thickness ratio for Model I (from h
 
/
 
H = 0.5 to 1.0) and for 

Model II (from h
 
/
 
H = 0.5 to 0.7). On the other hand, the 

frequency increases with the increase in the thickness ratio, 

in these linear domains. The maximum frequency is 

reached for a sandwich beam model I with h
 
/
 
H = 0.2 and 

θ = 0° (Fig. 6, a), while the maximum value of the fre-

quency is carried out for the sandwich beam Model II, with 

h
 
/
 
H = 0.7 and θ = 0° (Fig. 6, b). The first natural frequen-

cy of the sandwich beam for two thickness ratio 

(h
 
/
 
H = 0.2 and 0.7) is shows versus fiber orientation angle 

for Model I and II in the Figs. 7, a and 7, b, respectively. 

For the Model I (Fig. 7, a) with a strengthening of the or-

der of 30% (h
 
/
 
H = 0.7), the effect of fiber orientation on 

the natural frequency is low, this is due to the domination 

of the heavy nucleus (steel), which is not the case in the 

Model II (Fig. 7, b), the composite layer is dominant over 

the central layer (foam). For the sandwich beam with 

thickness ratio h
 
/
 
H = 0.2, the effect of fiber orientation on 

the natural frequency is larger and this for the two Models 

I and II. To investigate the influence of the boundary con-

ditions of the sandwich beam on the first natural frequen-

cies, four different boundary conditions were imposed on 

the beam (Fig. 8): simply-supported–simply-supported  

(S–S), clamped–clamped (C–C), clamped–free (C–F), and 

clamped– simply-supported (C–S). 
 

 
a 

 
b 

Fig. 6 First frequency of sandwich beam versus thickness 

ratio: a - Model I; b - Model II 
 

 
a 

 
b 

Fig. 7 Natural frequency of the sandwich beam versus fiber 

orientation angle: a - Model I; b - Model II 
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The first natural frequencies of the beam with 

coating composite (h / H = 0.25 and 0.75) are calculated 

and presented in Table 2 for both Models I and II with dif-

ferent fiber orientations. 

 

 

Fig. 8 Different boundary conditions were imposed on the 

beam with composite coats 

For both Models I and II, it can be indicated that 

the frequency of the sandwich beam with fiber orientation 

θ = 0° is relatively high compared with the others cases. 

This is explained by the fact that the fiber orientation to 0° 

(direction x) provides a maximum rigidity of the sandwich 

beam. Moreover, the maximum natural frequency value is 

reached to boundary conditions clamped–clamped (C–C) 

and this is evident. By comparing the natural frequencies 

of the beam with a composite coating h
 
/
 
H = 0.25 and 

0.75, one can conclude that the maximum frequency is 

201.4 Hz, that of the sandwich beam with thickness ratio 

h
 
/
 
H = 0.75. 

 

Table 2 

The first natural frequencies (Hz) of the beam with and without coating composite 

 

Model 

 

Boundary 

conditions 

 

without 

coating 

with coating 

h
 
/
 
H = 0.25 h

 
/
 
H = 0.75 

θ = 0° 30° 60° 90° θ = 0° 30° 60° 90° 

 

I 

S-S 72.8 51.4 26.9 41.5 27.4 59.2 54.2 56.9 54.2 

C-C 164.8 116.4 61. 94. 62.1 134.1 122.6 128.7 122.8 

C-F 26.1 18.3 9.6 14.8 9.8 21.3 19.4 20.4 19.5 

C-S 113.6 80.2 42. 64.8 42.8 92.4 84.5 88.7 84.6 

 

II 

S-S 17. 76.4 35.4 60.3 36.3 89. 41.6 70.3 42.6 

C-C 38.4 173.3 80.3 136.8 82.3 201.4 94.2 159.2 96.5 

C-F 6.1 27.2 12.6 21.5 12.9 31.9 14.9 25.2 15.3 

C-S 26.5 119.4 55.4 94.3 56.7 138.8 65. 109.8 66.5 

 

The first five mode shapes of the beam without 

coating are presented in Figs. 9 and 10 for both Models I 

and II. These two Figs. 9 and 10 show the mode shapes for 

boundary conditions simply-supported–simply-supported 

(S–S) and clamped–clamped (C–C), respectively. Since the 

Model II is more flexible than the Model I, it produces the 

larger amplitude of the modes. 

 

 

a 

 

b 

Fig. 9 First five modes shape of the beam for BC: S-S:  

a - Model I; b - Model II 

 

The first mode of the Model I and II of the simply 

supported the beam with and without coating composite 

(fiber angle, θ = 0°) with different thickness of the 

glass/epoxy composite layer are shown in Fig. 11. For the 

Model I (Fig. 11, a) when the thickness ratio increases (the 

thickness of the layer composite decreases), i.e., the stiff-

ness the sandwich increases, and thus the amplitude de-

creases. That is due to the fact that in the Model I, the 

stiffness of the core layer is higher than that of the face 

layer. However, for Model II (Fig. 11, b), it be found that 

the opposite effect is produced, because the rigidity of the 

sandwich decreases with the increase thickness ratio.  
 

 

a 

 

b 

Fig. 10 First five modes shape of the beam for BC; C-C: 

a - Model I; b - Model II 
 

As seen from the results, it is clear that the natural 

frequency and mode shapes of the beam with coating layer 

composite can be controlled by choosing the proper fiber 

orientation, the laminate thickness and the boundary condi-

tions imposed on the sandwich beam. 
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a 

 
b 

Fig. 11 Mode shapes plot of the beam with coating compo-

site and for S-S: a - Model I; b - Model II 
 

5. Conclusions 
 

In the present study, the analysis of free vibration 

of beams with composite coats has been investigated nu-

merically by finite element method and verified analytical-

ly. The following conclusions can be drawn from the pre-

sent study: (1) the natural frequencies obtained by the FEM 

are in good agreement with those of the method analytical, 

(2) the natural frequency increases generally with the in-

crease in the thickness ratio, (3) when the stiffness of the 

face layers is higher than that of the core layer, a linear 

relation is observed between frequency and thickness ratio 

and the amplitude of the mode increases when the thick-

ness ratio increases, (4) the frequencies are larger with a 

fiber orientation of 0° and this for any thickness of the re-

inforcing layer, This is explained by the fact that the fibers 

are the direction of the sandwich beam, (5)the boundary 

conditions clamped–clamped (C–C) give the maximum 

natural frequency value. 
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S. Tekili, Y. Khadri, B. Merzoug  
 

FINITE ELEMENT ANALYSIS OF FREE VIBRATION 

OF BEAMS WITH COMPOSITE COATS  
 

S u m m a r y 
 

This paper presents a finite element model to in-

vestigate the analysis of free vibration of beams with com-

posite coats. We used two sandwich beam models; the core 

is made from an isotropic material, the steel as heavy mate-

rial, for first model, and the foam as light material, em-

ployed in the second model. The faces are made from 

glass/epoxy composite material for the two models. The 

natural frequency and mode shapes of the sandwich beam 

are controlled by choosing the proper fiber orientation, the 

laminate thickness and the boundary conditions. The ef-

fects of these parameters are examined for the two models 

with different boundary conditions imposed on the beam. 

Good agreements were achieved between the finite ele-

ment method and analytical solutions.  
 

Keywords: free vibration, composites coats, finite element 

method, dynamic beams. 
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