Numerical investigations of laminar buoyant heat transfer in a 2D-enclosure – Application to wind turbine nacelle operating in hot climate
DOI:
https://doi.org/10.5755/j01.mech.23.5.15815Keywords:
Saharan climate, wind turbine nacelle, natural convection, cooling systemAbstract
The climate of the Algerian Sahara is characterized by extremethermal conditions. The wind turbines installed in theSahara, namely the electromechanical equipment located insidethe nacelle (e.g. electrical generator), are subjected to high andfluctuating temperature gradients during the day and the seasons.This reality might generate contradictory constraints of designand can lead to some difficulties of conception. In order to maintainan appropriate temperature of the air inside the nacelle (i.e.acceptable average temperature of the electromechanical equipment),the heat generated by the generator must be rejected towardsthe environment, and the resulting heat transfer must becontrolled properly. This work deals with heat transfer effectswithin a reduced scale nacelle, i.e. hypothetical nacelle. Forthis purpose, a small nacelle dimensions has been considered andrepresented as rectangular cavity. In this paper, the air flow fieldswithin the nacelle have been described using the Navier-Stokesequations. The energy equation has been used to account for heattransfer effects. ANSYS FLUENT code has been employed tosolve the resulting governing equations. The main object of thiswork is to determine the average temperature inside the nacelle,as well as to investigate its variation with the required coolingcapacity.Downloads
Published
2017-10-25
Issue
Section
MECHANICS OF FLUIDS AND GASES
License
The copyright for the articles in this journal is retained by the author(s) with the first publication right granted to the journal. The journal is licensed under the Creative Commons Attribution License 4.0 (CC BY 4.0).

