Study of Mechanical Properties of Roselle Fiber Reinforced Vinyl Ester Biocomposite Based on the length and content of Fiber
Mechanical Properties of Roselle Fiber Reinforced Vinyl Ester Biocomposite
DOI:
https://doi.org/10.5755/j02.mech.26603Keywords:
Biocomposite, Natural fibers, Fiber length, Fiber content, Mechanical propertiesAbstract
Mechanical properties of Roselle fiber reinforced vinyl ester biocomposite were studied based on the fiber content and length in the present communication. Usually, natural fiber reinforced polymer composites depend on some aspects such as fiber content, fiber length and orientation, the fiber-matrix adhesion. Composite plates were prepared by a simple hand lay-up technique for two different fiber lengths (3 and 13 mm) and five different fiber content (10, 20, 30, 40 and 50 wt%). Composite specimens were tested according to ASTM standards and their results were recorded. Experimental results showed that mechanical properties such as tensile, flexural and impact, increases with increase of fiber content up to 40 wt% after which it is decreases at both the fiber length. However, modulus values were increased linearly with fiber content of 10 to 50 wt%. Composites with the fiber length of 13 mm show the high level of mechanical properties compared to composites with the fiber length of 3 mm at all combinations of fiber contents. It is observed that the optimal fiber content is 40 wt%, which can be used to obtain the maximum property level in the Roselle fiber reinforced vinyl ester composites
Downloads
Published
Issue
Section
License
The copyright for the articles in this journal is retained by the author(s) with the first publication right granted to the journal. The journal is licensed under the Creative Commons Attribution License 4.0 (CC BY 4.0).

