Swirling Flows Characteristics in a Cylinder Under Effect of Buoyancy
DOI:
https://doi.org/10.5755/j02.mech.27975Abstract
Thermal buoyancy, induced by injection or by differential heating of a tiny rod is explored to control breakdown in the core of a helical flow driven by the lid rotation of a cylinder. Three main parameters are required to characterize numerically the flow behavior; namely, the rotational Reynolds number Re, the cavity aspect ratio and the Richardson number Ri. Warm injection/rod, Ri > 0, is shown to prevent on-axis flow stagnation while breakdown enhancement is evidenced when Ri < 0. Results revealed that a bubble vortex evolves into a ring type structure which may remain robust, as observed in prior related experiments or, in contrast, disappear over a given range of parameters (Λh, Re, Ri > 0). Besides, the emergence of such a toroidal mode was not found to occur under thermal stratification induced by a differentially heated rod. Moreover, three state diagrams were established which provide detailed flow characteristics under the distinct and combined effects of buoyancy strength, viscous effects and cavity aspect ratio.