Finite element analysis of wrinkling of buried pressure pipeline under strike-slip fault
DOI:
https://doi.org/10.5755/j01.mech.21.3.8891Keywords:
buried pressure pipeline, strike-slip fault, wrinkling, finite element method, axial strainAbstract
Wrinkling behavior of buried pressure pipeline under strike-slip fault movement was investigated by finite element method. And effects of fault displacement, internal pressure, diameter-thick ratio and dip angle on the wrinkling modes and axial strain of pipeline were discussed. The results show that there are two wrinkling locations of buried pipeline under strike-slip fault displacement. There is only one wrinkle on A part, but more than two wrinkles on B part. Buckling mode of buried steel pipeline presents three states under different internal pressures. They are collapse state, critical state between collapse and wrinkling, and wrinkling state. The greater diameter-thick ratio can enhance the ability to resistance to bending moment. Bending curve of pipeline changes from S-shape to Z-shape with the increasing of diameter-thick ratio. Wrinkling is more serious with the increasing of fault displacement and diameter-thick ratio. There are two wrinkling modes of B part pipeline when dip angle β=0°~45°.
Published
Issue
Section
License
The copyright for the articles in this journal is retained by the author(s) with the first publication right granted to the journal. The journal is licensed under the Creative Commons Attribution License 4.0 (CC BY 4.0).

