MATHEMATICAL MODELING AND OPTIMIZATION OF SURFACE ROUGHNESS IN TURNING OF POLYAMIDE BASED ON ARTIFICIAL NEURAL NETWORK

M. Madić, V. Marinković, M. Radovanović

Abstract


This paper presents the methodology of mathematical modeling of surface roughness in turning of polyamide based on artificial neural network. The surface roughness model was developed in terms of the main cutting parameters such as feed rate, cutting speed, depth of cut, and tool nose radius. The data for modeling were collected through experiment based on Taguchi L27 orthogonal array.

In addition to modeling, by applying the simplex optimization method, the optimal cutting parameter setting minimizing surface roughness, was determined.

From the model analysis performed by generating 3D response graphs the following conclusions are drawn.

Feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and depth of cut. As for cutting speed, its effect is not very important.

The minimal surface roughness results with the combination of low feed rate, low depth of cut, low cutting speed and high tool nose radius.

DOI: http://dx.doi.org/10.5755/j01.mech.18.5.2701


Keywords


mathematical modelling; optimization; surface roughness; turning; polyamide; artificial neural network

Full Text: PDF

Print ISSN: 1392-1207
Online ISSN: 2029-6983