Passivity-based adaptive robust super-twisting nonlinear control for electro-hydraulic system with uncertainties and disturbances
DOI:
https://doi.org/10.5755/j02.mech.32405Keywords:
Passivity, electro-hydraulic system, super-twisting, sliding mode control, adaptive controlAbstract
In this paper, a passive-based adaptive robust super-twisting nonlinear controller (PBARSNC) is proposed for high accuracy torque tracking control of the novel electro-hydraulic loading system with disturbances and uncertainties. The construction of the stability of this electro-hydraulic control system is given using passivity theory that results in a passivity-based controller (PBC). Considering parameter uncertainties and constant or slowly varying disturbances, adaptive law is adopted in the passivity-based controller. Furthermore, super-twisting second-order sliding mode control is used to reject modeling uncertainties and matched disturbances. Passivity theory, adaptive method and super-twisting algorithm are synthesized via the recursive design method. The proposed passive-based adaptive robust super-twisting nonlinear control can guarantee the torque tracking performance in the presence of various uncertainties, which is very important for high-accuracy tracking control of hydraulic servo systems. Extensive simulations are carried out to verify the high-accuracy tracking performance of the proposed control strategy.
Downloads
Published
Issue
Section
License
The copyright for the articles in this journal is retained by the author(s) with the first publication right granted to the journal. The journal is licensed under the Creative Commons Attribution License 4.0 (CC BY 4.0).

